Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

BAF60a deficiency uncouples chromatin accessibility and cold sensitivity from white fat browning.

Tytuł:
BAF60a deficiency uncouples chromatin accessibility and cold sensitivity from white fat browning.
Autorzy:
Liu T; Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
Mi L; Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
Xiong J; Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
Orchard P; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.; Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
Yu Q; Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
Yu L; Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
Zhao XY; Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
Meng ZX; Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China.; Chronic Disease Research Institute of School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
Parker SCJ; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.; Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
Lin JD; Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA. .
Li S; Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA. .
Źródło:
Nature communications [Nat Commun] 2020 May 13; Vol. 11 (1), pp. 2379. Date of Electronic Publication: 2020 May 13.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Cold Temperature*
Adipose Tissue, Brown/*metabolism
Adipose Tissue, White/*metabolism
Chromatin/*metabolism
Chromosomal Proteins, Non-Histone/*deficiency
Adipocytes, Brown/drug effects ; Adipocytes, Brown/metabolism ; Adipocytes, Brown/ultrastructure ; Adipose Tissue, Beige/metabolism ; Adipose Tissue, Brown/drug effects ; Adipose Tissue, White/drug effects ; Adrenocorticotropic Hormone/pharmacology ; Animals ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; Binding Sites/genetics ; Cells, Cultured ; Chromatin/genetics ; Chromosomal Proteins, Non-Histone/genetics ; Gene Expression/drug effects ; Membrane Proteins/genetics ; Membrane Proteins/metabolism ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism ; Thermogenesis/drug effects ; Thermogenesis/genetics
References:
Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004). (PMID: 1471591710.1152/physrev.00015.2003)
Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27–37 (2019). (PMID: 3050303410.1016/j.cmet.2018.11.002)
Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013). (PMID: 2410099810.1038/nm.3361)
Ikeda, K., Maretich, P. & Kajimura, S. The common and distinct features of brown and beige adipocytes. Trends Endocrinol. Metab. 29, 191–200 (2018). (PMID: 29366777582679810.1016/j.tem.2018.01.001)
Villarroya, F., Gavalda-Navarro, A., Peyrou, M., Villarroya, J. & Giralt, M. The lives and times of brown adipokines. Trends Endocrinol. Metab. 28, 855–867 (2017). (PMID: 2911371110.1016/j.tem.2017.10.005)
Wang, G. X., Zhao, X. Y. & Lin, J. D. The brown fat secretome: metabolic functions beyond thermogenesis. Trends Endocrinol. Metab. 26, 231–237 (2015). (PMID: 25843910441702810.1016/j.tem.2015.03.002)
Wang, G. X. et al. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat. Med. 20, 1436–1443 (2014). (PMID: 25401691425790710.1038/nm.3713)
Betz, M. J. & Enerback, S. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat. Rev. Endocrinol. 14, 77–87 (2018). (PMID: 2905259110.1038/nrendo.2017.132)
Cypess, A. M. et al. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015). (PMID: 25565203429835110.1016/j.cmet.2014.12.009)
Lee, P. et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63, 3686–3698 (2014). (PMID: 24954193420739110.2337/db14-0513)
Lowell, B. B. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742 (1993). (PMID: 826479510.1038/366740a0)
Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404–3408 (2013). (PMID: 23867622372616410.1172/JCI67803)
Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011). (PMID: 2125833710.1038/nm.2297)
van der Lans, A. A. et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest. 123, 3395–3403 (2013). (PMID: 23867626372617210.1172/JCI68993)
Inagaki, T., Sakai, J. & Kajimura, S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat. Rev. Mol. Cell. Biol. 17, 480–495 (2016). (PMID: 27251423495653810.1038/nrm.2016.62)
Shapira, S. N. & Seale, P. Transcriptional control of brown and beige fat development and function. Obesity (Silver Spring) 27, 13–21 (2019). (PMID: 10.1002/oby.22334)
Gatchalian, J. et al. A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat. Commun. 9, 5139 (2018). (PMID: 30510198627744410.1038/s41467-018-07528-9)
Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015). (PMID: 26601204464060710.1126/sciadv.1500447)
Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288 e1220 (2018). (PMID: 30343899679182410.1016/j.cell.2018.09.032)
Michel, B. C. et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420 (2018). (PMID: 30397315669838610.1038/s41556-018-0221-1)
Shapira, S. N. et al. EBF2 transcriptionally regulates brown adipogenesis via the histone reader DPF3 and the BAF chromatin remodeling complex. Genes Dev. 31, 660–673 (2017). (PMID: 28428261541170710.1101/gad.294405.116)
Abe, Y. et al. JMJD1A is a signal-sensing scaffold that regulates acute chromatin dynamics via SWI/SNF association for thermogenesis. Nat. Commun. 6, 7052 (2015). (PMID: 2594851110.1038/ncomms8052)
Wang, R. R. et al. The SWI/SNF chromatin-remodeling factors BAF60a, b, and c in nutrient signaling and metabolic control. Protein Cell 9, 207–215 (2018). (PMID: 2868808310.1007/s13238-017-0442-2)
Li, S. et al. Genome-wide coactivation analysis of PGC-1alpha identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metab. 8, 105–117 (2008). (PMID: 18680712257882710.1016/j.cmet.2008.06.013)
Meng, Z. X. et al. A diet-sensitive BAF60a-mediated pathway links hepatic bile acid metabolism to cholesterol absorption and atherosclerosis. Cell Rep. 13, 1658–1669 (2015). (PMID: 26586440466291110.1016/j.celrep.2015.10.033)
Forcales, S. V. et al. Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. EMBO J. 31, 301–316 (2012). (PMID: 2206805610.1038/emboj.2011.391)
Meng, Z. X. et al. Glucose sensing by skeletal myocytes couples nutrient signaling to systemic homeostasis. Mol. Cell 66, 332–344 e334 (2017). (PMID: 28475869548911810.1016/j.molcel.2017.04.007)
Meng, Z. X. et al. Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation. Nat. Med 19, 640–645 (2013). (PMID: 23563706365011010.1038/nm.3144)
Puri, P. L. & Mercola, M. BAF60 A, B, and Cs of muscle determination and renewal. Genes Dev. 26, 2673–2683 (2012). (PMID: 23222103353307210.1101/gad.207415.112)
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013). (PMID: 24097267395982510.1038/nmeth.2688)
Wang, X. et al. BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors. Nat. Commun. 10, 1881 (2019). (PMID: 31015438647905010.1038/s41467-019-09891-7)
Alpsoy, A. & Dykhuizen, E. C. Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. J. Biol. Chem. 293, 3892–3903 (2018). (PMID: 29374058585800310.1074/jbc.RA117.001065)
Remillard, D. et al. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew. Chem. Int. Ed. Engl. 56, 5738–5743 (2017). (PMID: 28418626596723610.1002/anie.201611281)
Theodoulou, N. H. et al. Discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition. J. Med. Chem. 59, 1425–1439 (2016). (PMID: 2585600910.1021/acs.jmedchem.5b00256)
Ikeda, K. et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23, 1454–1465 (2017). (PMID: 29131158572790210.1038/nm.4429)
Chen, Y. et al. Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature 565, 180–185 (2019). (PMID: 3056830210.1038/s41586-018-0801-z)
Jun, H. et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat. Med. 24, 814–822 (2018). (PMID: 29785025599203210.1038/s41591-018-0032-8)
van den Beukel, J. C. et al. Direct activating effects of adrenocorticotropic hormone (ACTH) on brown adipose tissue are attenuated by corticosterone. FASEB J. 28, 4857–4867 (2014). (PMID: 2508592410.1096/fj.14-254839)
Schnabl, K., Westermeier, J., Li, Y. & Klingenspor, M. Opposing actions of adrenocorticotropic hormone and glucocorticoids on UCP1-mediated respiration in brown adipocytes. Front. Physiol. 9, 1931 (2018). (PMID: 3070563510.3389/fphys.2018.01931)
Cohen, P. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304–316 (2014). (PMID: 24439384392240010.1016/j.cell.2013.12.021)
Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007). (PMID: 17618855256484610.1016/j.cmet.2007.06.001)
Rajakumari, S. et al. EBF2 determines and maintains brown adipocyte identity. Cell Metab. 17, 562–574 (2013). (PMID: 23499423362211410.1016/j.cmet.2013.01.015)
Stine, R. R. et al. EBF2 promotes the recruitment of beige adipocytes in white adipose tissue. Mol. Metab. 5, 57–65 (2016). (PMID: 2684420710.1016/j.molmet.2015.11.001)
Meng, Z. X. et al. Uncoupling exercise bioenergetics from systemic metabolic homeostasis by conditional inactivation of baf60 in skeletal muscle. Diabetes 67, 85–97 (2018). (PMID: 2909288810.2337/db17-0367)
Schulz, T. J. et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495, 379–383 (2013). (PMID: 23485971362355510.1038/nature11943)
Zhang, X., Saarinen, A. M., Campbell, L. E., De Filippis, E. A. & Liu, J. Regulation of lipolytic response and energy balance by melanocortin 2 receptor accessory protein (MRAP) in adipocytes. Diabetes 67, 222–234 (2018). (PMID: 2921765510.2337/db17-0862)
Klein, J. et al. Beta(3)-adrenergic stimulation differentially inhibits insulin signaling and decreases insulin-induced glucose uptake in brown adipocytes. J. Biol. Chem. 274, 34795–34802 (1999). (PMID: 1057495010.1074/jbc.274.49.34795)
Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012). (PMID: 22796012340260110.1016/j.cell.2012.05.016)
Li, S. et al. Zbtb7b engages the long noncoding RNA Blnc1 to drive brown and beige fat development and thermogenesis. Proc. Natl Acad. Sci. USA 114, E7111–E7120 (2017). (PMID: 287847775576792)
Zhao, X. Y., Li, S., Wang, G. X., Yu, Q. & Lin, J. D. A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation. Mol. Cell 55, 372–382 (2014). (PMID: 25002143412710410.1016/j.molcel.2014.06.004)
Crane, J. D., Mottillo, E. P., Farncombe, T. H., Morrison, K. M. & Steinberg, G. R. A standardized infrared imaging technique that specifically detects UCP1-mediated thermogenesis in vivo. Mol. Metab. 3, 490–494 (2014). (PMID: 24944909406022510.1016/j.molmet.2014.04.007)
Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017). (PMID: 28846090562310610.1038/nmeth.4396)
Orchard, P. et al. Genome-wide chromatin accessibility and transcriptome profiling show minimal epigenome changes and coordinated transcriptional dysregulation of hedgehog signaling in Danforth’s short tail mice. Hum. Mol. Genet. 18, 3544–3552 (2018).
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010). (PMID: 20513432289852610.1016/j.molcel.2010.05.004)
Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc. Natl Acad. Sci. USA 114, 2301–2306 (2017). (PMID: 2819385910.1073/pnas.16211921145338551)
Grant Information:
P30 DK020572 United States DK NIDDK NIH HHS; P30 DK089503 United States DK NIDDK NIH HHS; T32 HG000040 United States HG NHGRI NIH HHS
Substance Nomenclature:
0 (Basic Helix-Loop-Helix Transcription Factors)
0 (Chromatin)
0 (Chromosomal Proteins, Non-Histone)
0 (Ebf2 protein, mouse)
0 (MRAP protein, mouse)
0 (Membrane Proteins)
0 (Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha)
0 (Smarcd1 protein, mouse)
9002-60-2 (Adrenocorticotropic Hormone)
Entry Date(s):
Date Created: 20200515 Date Completed: 20200810 Latest Revision: 20220422
Update Code:
20240105
PubMed Central ID:
PMC7221096
DOI:
10.1038/s41467-020-16148-1
PMID:
32404872
Czasopismo naukowe
Brown and beige fat share a remarkably similar transcriptional program that supports fuel oxidation and thermogenesis. The chromatin-remodeling machinery that governs genome accessibility and renders adipocytes poised for thermogenic activation remains elusive. Here we show that BAF60a, a subunit of the SWI/SNF chromatin-remodeling complexes, serves an indispensable role in cold-induced thermogenesis in brown fat. BAF60a maintains chromatin accessibility at PPARγ and EBF2 binding sites for key thermogenic genes. Surprisingly, fat-specific BAF60a inactivation triggers more pronounced cold-induced browning of inguinal white adipose tissue that is linked to induction of MC2R, a receptor for the pituitary hormone ACTH. Elevated MC2R expression sensitizes adipocytes and BAF60a-deficient adipose tissue to thermogenic activation in response to ACTH stimulation. These observations reveal an unexpected dichotomous role of BAF60a-mediated chromatin remodeling in transcriptional control of brown and beige gene programs and illustrate a pituitary-adipose signaling axis in the control of thermogenesis.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies