Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Biomaterial and implant induced ossification: in vitro and in vivo findings.

Tytuł:
Biomaterial and implant induced ossification: in vitro and in vivo findings.
Autorzy:
Vallittu PK; Department of Biomaterials Science, Institute of Dentistry, University of Turku and City of Turku, Welfare Division, Turku, Finland.
Posti JP; Division of Clinical Neurosciences, Department of Neurosurgery, Turku Brain Injury Centre, Turku University Hospital and University of Turku, Turku, Finland.
Piitulainen JM; Division of Surgery and Cancer Diseases, Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, Turku Finland and University of Turku, Turku, Finland.
Serlo W; PEDEGO Research Unit, University of Oulu, Oulu, Finland and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.
Määttä JA; Institute of Biomedicine, University of Turku, Turku, Finland.
Heino TJ; Institute of Biomedicine, University of Turku, Turku, Finland.
Pagliari S; International Clinical Research Center of St. Anne's University Hospital Brno, Brno, Czech Republic.
Syrjänen SM; Department of Oral Pathology and Radiology, Institute of Dentistry, University of Turku, Turku, Finland.
Forte G; International Clinical Research Center of St. Anne's University Hospital Brno, Brno, Czech Republic.
Źródło:
Journal of tissue engineering and regenerative medicine [J Tissue Eng Regen Med] 2020 Aug; Vol. 14 (8), pp. 1157-1168. Date of Electronic Publication: 2020 Jul 08.
Typ publikacji:
Case Reports; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Chichester, West Sussex, UK : John Wiley & Sons
MeSH Terms:
Prostheses and Implants*
Biocompatible Materials/*administration & dosage
Osteogenesis/*drug effects
Humans ; Male ; Middle Aged ; Skull/injuries ; Skull/metabolism
References:
Dentomaxillofac Radiol. 2018 Oct;47(7):20170361. (PMID: 29718688)
Acta Neurochir (Wien). 2014 Jul;156(7):1361-8. (PMID: 24752723)
Calcif Tissue Int. 1994 Dec;55(6):458-66. (PMID: 7895185)
Acta Biomater. 2013 Feb;9(2):5400-10. (PMID: 22967942)
World Neurosurg. 2019 Apr;124:282-286. (PMID: 30684720)
Eur Rev Med Pharmacol Sci. 2019 Apr;23(2 Suppl):240-251. (PMID: 30977891)
J Mater Sci Mater Med. 2005 Sep;16(9):873-9. (PMID: 16167117)
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):990-5. (PMID: 24395775)
J Biomed Mater Res B Appl Biomater. 2008 Feb;84(2):510-9. (PMID: 17618510)
PLoS One. 2016 Feb 01;11(2):e0148173. (PMID: 26828589)
Tissue Eng. 2007 Mar;13(3):501-12. (PMID: 17319794)
Head Neck. 2014 May;36(5):722-8. (PMID: 23616383)
J Tissue Eng Regen Med. 2018 Apr;12(4):e1911-e1925. (PMID: 29207216)
J Mater Sci Mater Med. 2008 Oct;19(10):3169-77. (PMID: 18437534)
Bone. 2006 Sep;39(3):494-504. (PMID: 16644298)
J Mech Behav Biomed Mater. 2015 Mar;55:191-200. (PMID: 26594779)
Clin Orthop Relat Res. 2002 Feb;(395):81-98. (PMID: 11937868)
Tissue Eng Part A. 2014 Jul;20(13-14):1827-40. (PMID: 24447025)
J Tissue Eng Regen Med. 2020 Aug;14(8):1157-1168. (PMID: 32415757)
Mol Biol Cell. 2017 May 15;28(10):1326-1336. (PMID: 28331074)
World Neurosurg. 2015 May;83(5):708-14. (PMID: 25681593)
Tissue Eng Part A. 2010 Aug;16(8):2467-73. (PMID: 20214455)
Mol Metab. 2014 Mar 22;3(4):384-93. (PMID: 24944898)
Biomaterials. 2001 Jan;22(2):175-85. (PMID: 11101161)
ACS Appl Mater Interfaces. 2018 Dec 12;10(49):42018-42029. (PMID: 30412372)
Neurosurg Focus. 2009 Jun;26(6):E10. (PMID: 19485714)
Brain Inj. 2016;30(2):164-71. (PMID: 26647093)
Scand J Surg. 2012;101(1):66-71. (PMID: 22414472)
PLoS One. 2013 Jun 18;8(6):e65943. (PMID: 23823126)
J Biomed Mater Res B Appl Biomater. 2007 Jul;82(1):149-55. (PMID: 17106892)
J Spinal Disord Tech. 2011 Oct;24(7):455-61. (PMID: 21909036)
J Biomed Mater Res B Appl Biomater. 2019 Apr;107(3):847-857. (PMID: 30194906)
J Biomed Mater Res A. 2010 May;93(2):475-83. (PMID: 19582832)
Scand J Surg. 2016 Dec;105(4):248-253. (PMID: 26929284)
Acta Biomater. 2008 Sep;4(5):1498-505. (PMID: 18502193)
Biomaterials. 2019 Jun;205:64-80. (PMID: 30904599)
J Craniofac Surg. 2016 Nov;27(8):2061-2072. (PMID: 28005754)
Cells Tissues Organs. 2003;174(3):101-9. (PMID: 12835573)
Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):4020-4029. (PMID: 31595797)
Plast Reconstr Surg. 1999 Aug;104(2):435-44. (PMID: 10654687)
J Mech Behav Biomed Mater. 2011 Nov;4(8):1797-804. (PMID: 22098879)
Nature. 1994 Apr 14;368(6472):639-43. (PMID: 8145850)
Clin Neurol Neurosurg. 2013 Sep;115(9):1788-91. (PMID: 23725651)
J Biomed Mater Res B Appl Biomater. 2005 Nov;75(2):334-42. (PMID: 16032653)
Neurosurgery. 2016 Oct;79(4):525-34. (PMID: 27489166)
Nat Biotechnol. 2004 May;22(5):560-7. (PMID: 15077117)
Genes Dis. 2014 Sep;1(1):87-105. (PMID: 25401122)
Eur Arch Otorhinolaryngol. 2012 Feb;269(2):623-8. (PMID: 21630063)
Dent Mater. 2015 Apr;31(4):371-81. (PMID: 25640687)
Neuropsychiatr Dis Treat. 2014 May 02;10:695-701. (PMID: 24833902)
Dent Mater. 2012 Nov;28(11):1134-45. (PMID: 22925703)
Contributed Indexing:
Keywords: bioactive glass; bioactivity; biomaterial-induced ossification; cranial implant; fiber-reinforced composite; osteogenesis
Substance Nomenclature:
0 (Biocompatible Materials)
Entry Date(s):
Date Created: 20200517 Date Completed: 20210811 Latest Revision: 20240329
Update Code:
20240329
PubMed Central ID:
PMC7496445
DOI:
10.1002/term.3056
PMID:
32415757
Raport
Material-induced ossification is suggested as a suitable approach to heal large bone defects. Fiber-reinforced composite-bioactive glasses (FRC-BGs) display properties that could enhance the ossification of calvarial defects. Here, we analyzed the healing processes of a FRC-BG implant in vivo from the perspective of material-induced ossification. Histological analysis of the implant, which was removed 5 months after insertion, showed the formation of viable, noninflammatory mesenchymal tissue with newly-formed mineralized woven bone, as well as nonmineralized connective tissue with capillaries and larger blood vessels. The presence of osteocytes was detected within the newly generated bone matrix. To expand our understanding on the osteogenic properties of FRC-BG, we cultured human adipose tissue-derived mesenchymal stromal cells (AD-MSCs) in the presence of two different BGs (45S5 and S53P4) and Al 2 O 3 control. AD-MSCs grew and proliferated on all the scaffolds tested, as well as secreted abundant extracellular matrix, when osteogenic differentiation was appropriately stimulated. 45S5 and S53P4 induced enhanced expression of COL2A1, COL10A1, COL5A1 collagen subunits, and pro-osteogenic genes BMP2 and BMP4. The concomitant downregulation of BMP3 was also detected. Our findings show that FRC-BG can support the vascularization of the implant and the formation of abundant connective tissue in vivo. Specifically, BG 45S5 and BG S53P4 are suited to evoke the osteogenic potential of host mesenchymal stromal cells. In conclusion, FRC-BG implant demonstrated material-induced ossification both in vitro and in vivo.
(© 2020 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies