Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Structural basis for assembly and function of a diatom photosystem I-light-harvesting supercomplex.

Tytuł:
Structural basis for assembly and function of a diatom photosystem I-light-harvesting supercomplex.
Autorzy:
Nagao R; Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
Kato K; Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
Ifuku K; Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
Suzuki T; Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.
Kumazawa M; Faculty of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
Uchiyama I; National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, 444-8585, Japan.
Kashino Y; Graduate School of Life Science, University of Hyogo, Hyogo, 678-1297, Japan.
Dohmae N; Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.
Akimoto S; Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan.
Shen JR; Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
Miyazaki N; Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan. .; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8577, Japan. .
Akita F; Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan. fusamichi_.; Japan Science and Technology Agency, PRESTO, Saitama, 332-0012, Japan. fusamichi_.
Źródło:
Nature communications [Nat Commun] 2020 May 18; Vol. 11 (1), pp. 2481. Date of Electronic Publication: 2020 May 18.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Diatoms/*metabolism
Light-Harvesting Protein Complexes/*chemistry
Light-Harvesting Protein Complexes/*metabolism
Photosystem I Protein Complex/*chemistry
Photosystem I Protein Complex/*metabolism
Chlorophyll/metabolism ; Chlorophyll Binding Proteins/chemistry ; Chlorophyll Binding Proteins/ultrastructure ; Energy Transfer ; Light-Harvesting Protein Complexes/ultrastructure ; Models, Molecular ; Photosystem I Protein Complex/ultrastructure ; Protein Binding ; Protein Subunits/metabolism ; Structure-Activity Relationship
References:
Blankenship, R. E. Molecular mechanisms of photosynthesis. 2nd edn, (Wiley-Blackwell, 2014).
Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004). (PMID: 1525666310.1126/science.1095964)
Qin, X., Suga, M., Kuang, T. & Shen, J.-R. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348, 989–995 (2015). (PMID: 2602313310.1126/science.aab0214)
Mazor, Y., Borovikova, A., Caspy, I. & Nelson, N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nat. Plants 3, 17014 (2017). (PMID: 2824829510.1038/nplants.2017.14)
Su, X. et al. Antenna arrangement and energy transfer pathways of a green algal photosystem-I-LHCI supercomplex. Nat. Plants 5, 273–281 (2019). (PMID: 3085081910.1038/s41477-019-0380-5)
Suga, M. et al. Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. Nat. Plants 5, 626–636 (2019). (PMID: 3118284710.1038/s41477-019-0438-4)
Qin, X. et al. Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. Nat. Plants 5, 263–272 (2019). (PMID: 3085082010.1038/s41477-019-0379-y)
Perez-Boerema, A. et al. Structure of a minimal photosystem I from the green alga Dunaliella salina. Nat. Plants 6, 321–327 (2020). (PMID: 3212335110.1038/s41477-020-0611-9)
Pi, X. et al. Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc. Natl Acad. Sci. USA 115, 4423–4428 (2018). (PMID: 2963216910.1073/pnas.1722482115)
Antoshvili, M., Caspy, I., Hippler, M. & Nelson, N. Structure and function of photosystem I in Cyanidioschyzon merolae. Photosynth. Res. 139, 499–508 (2019). (PMID: 2958222710.1007/s11120-018-0501-4)
Nagao, R. et al. Biochemical characterization of photosystem I complexes having different subunit compositions of fucoxanthin chlorophyll a/c-binding proteins in the diatom Chaetoceros gracilis. Photosynth. Res. 140, 141–149 (2019). (PMID: 3018730210.1007/s11120-018-0576-y)
Nagao, R., Kagatani, K., Ueno, Y., Shen, J.-R. & Akimoto, S. Ultrafast excitation energy dynamics in a diatom photosystem I-antenna complex: a femtosecond fluorescence upconversion study. J. Phys. Chem. B 123, 2673–2678 (2019). (PMID: 3080717010.1021/acs.jpcb.8b12086)
Nagao, R., Yokono, M., Ueno, Y., Shen, J.-R. & Akimoto, S. Low-energy chlorophylls in fucoxanthin chlorophyll a/c-binding protein conduct excitation energy transfer to photosystem I in diatoms. J. Phys. Chem. B 123, 66–70 (2019). (PMID: 3051185710.1021/acs.jpcb.8b09253)
Nagao, R., Yokono, M., Ueno, Y., Shen, J.-R. & Akimoto, S. pH-sensing machinery of excitation energy transfer in diatom PSI-FCPI complexes. J. Phys. Chem. Lett. 10, 3531–3535 (2019). (PMID: 3119260810.1021/acs.jpclett.9b01314)
Nagao, R., Yokono, M., Ueno, Y., Shen, J.-R. & Akimoto, S. Excitation energy transfer and quenching in diatom PSI-FCPI upon P700 cation formation. J. Phys. Chem. B 124, 1481–1486 (2020). (PMID: 3201113910.1021/acs.jpcb.0c00715)
Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001). (PMID: 1141884810.1038/35082000)
Armbrust, E. V. et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004). (PMID: 1545938210.1126/science.1101156)
Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239–244 (2008). (PMID: 1892339310.1038/nature07410)
Kubota-Kawai, H. et al. X-ray structure of an asymmetrical trimeric ferredoxin-photosystem I complex. Nat. Plants 4, 218–224 (2018). (PMID: 2961053710.1038/s41477-018-0130-0)
Ahn, T. K. et al. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320, 794–797 (2008). (PMID: 1846758810.1126/science.1154800)
Ruban, A. V., Johnson, M. P. & Duffy, C. D. P. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta 1817, 167–181 (2012). (PMID: 2156975710.1016/j.bbabio.2011.04.007)
Wang, W. et al. Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science 363, eaav0365 (2019). (PMID: 3073338710.1126/science.aav0365)
Nagao, R. et al. Structural basis for energy harvesting and dissipation in a diatom PSII-FCPII supercomplex. Nat. Plants 5, 890–901 (2019). (PMID: 3135896010.1038/s41477-019-0477-x)
Pi, X. et al. The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex. Science 365, eaax4406 (2019). (PMID: 3137157810.1126/science.aax4406)
Goss, R. & Lepetit, B. Biodiversity of NPQ. J. Plant Physiol. 172, 13–32 (2015). (PMID: 2485458110.1016/j.jplph.2014.03.004)
Nagao, R., Yokono, M., Akimoto, S. & Tomo, T. High excitation energy quenching in fucoxanthin chlorophyll a/c-binding protein complexes from the diatom Chaetoceros gracilis. J. Phys. Chem. B 117, 6888–6895 (2013). (PMID: 2368834310.1021/jp403923q)
Nagao, R., Yokono, M., Tomo, T. & Akimoto, S. Control mechanism of excitation energy transfer in a complex consisting of photosystem II and fucoxanthin chlorophyll a/c-binding protein. J. Phys. Chem. Lett. 5, 2983–2987 (2014). (PMID: 2627824710.1021/jz501496p)
Nagao, R., Tomo, T., Narikawa, R., Enami, I. & Ikeuchi, M. Conversion of photosystem II dimer to monomers during photoinhibition is tightly coupled with decrease in oxygen-evolving activity in the diatom Chaetoceros gracilis. Photosynth. Res. 130, 83–91 (2016). (PMID: 2684677210.1007/s11120-016-0226-1)
Kramer, D. M., Sacksteder, C. A. & Cruz, J. A. How acidic is the lumen? Photosynth. Res. 60, 151–163 (1999). (PMID: 10.1023/A:1006212014787)
Dinc, E. et al. LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells. Proc. Natl Acad. Sci. USA 113, 7673–7678 (2016). (PMID: 2733545710.1073/pnas.1605380113)
Pinnola, A. et al. Functional modulation of LHCSR1 protein from Physcomitrella patens by zeaxanthin binding and low pH. Sci. Rep. 7, 11158 (2017). (PMID: 28894198559382410.1038/s41598-017-11101-7)
Nagao, R., Ueno, Y., Yokono, M., Shen, J.-R. & Akimoto, S. Alterations of pigment composition and their interactions in response to different light conditions in the diatom Chaetoceros gracilis probed by time-resolved fluorescence spectroscopy. Biochim. Biophys. Acta 1859, 524–530 (2018). (PMID: 10.1016/j.bbabio.2018.04.003)
Ueno, Y., Nagao, R., Shen, J.-R. & Akimoto, S. Spectral properties and excitation relaxation of novel fucoxanthin chlorophyll a/c-binding protein complexes. J. Phys. Chem. Lett. 10, 5148–5152 (2019).
Nagao, R., Ueno, Y., Akimoto, S. & Shen, J.-R. Effects of CO 2 and temperature on photosynthetic performance in the diatom Chaetoceros gracilis. Photosynth. Res. https://doi.org/10.1007/s11120-020-00729-8 (2020).
Akimoto, S., Ueno, Y., Yokono, M., Shen, J.-R. & Nagao, R. Adaptation of light-harvesting and energy-transfer processes of a diatom Chaetoceros gracilis to different light qualities. Photosynth. Res. https://doi.org/10.1007/s11120-020-00713-2 (2020).
Tanabe, M. et al. Changes in excitation relaxation of diatoms in response to fluctuating light, probed by fluorescence spectroscopies. Photosynth. Res. https://doi.org/10.1007/s11120-020-00720-3 (2020).
Nagao, R. et al. Isolation and characterization of oxygen-evolving thylakoid membranes and Photosystem II particles from a marine diatom Chaetoceros gracilis. Biochim. Biophys. Acta 1767, 1353–1362 (2007). (PMID: 1799619110.1016/j.bbabio.2007.10.007)
Ifuku, K. et al. A stable and efficient nuclear transformation system for the diatom Chaetoceros gracilis. Photosynth. Res. 123, 203–211 (2015). (PMID: 2529789610.1007/s11120-014-0048-y)
Katoh, K. & Standley, D. M. MAFFT: iterative refinement and additional methods. Methods Mol. Biol. 1079, 131–146 (2014). (PMID: 2417039910.1007/978-1-62703-646-7_8)
Stamatakis, A., Hoover, P. & Rougemont, J. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 57, 758–771 (2008). (PMID: 1885336210.1080/1063515080242964218853362)
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). (PMID: 282504662825046610.1038/nmeth.4193)
Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003). (PMID: 1278166010.1016/S1047-8477(03)00069-8)
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018). (PMID: 30412051625042510.7554/eLife.42166)
Grigorieff, N. & Harrison, S. C. Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy. Curr. Opin. Struc. Biol. 21, 265–273 (2011). (PMID: 10.1016/j.sbi.2011.01.008)
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010). (PMID: 10.1107/S0907444910007493)
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010). (PMID: 10.1107/S0907444909052925)
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010). (PMID: 2005704410.1107/S0907444909042073)
Barad, B. A. et al. EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy. Nat. Methods 12, 943–946 (2015). (PMID: 26280328458948110.1038/nmeth.3541)
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015). (PMID: 259502372595023710.1038/nprot.2015.053)
Pettersen, E. F. et al. UCSF chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (PMID: 10.1002/jcc.20084)
Substance Nomenclature:
0 (Chlorophyll Binding Proteins)
0 (Light-Harvesting Protein Complexes)
0 (Photosystem I Protein Complex)
0 (Protein Subunits)
1406-65-1 (Chlorophyll)
Entry Date(s):
Date Created: 20200520 Date Completed: 20200812 Latest Revision: 20210518
Update Code:
20240105
PubMed Central ID:
PMC7235021
DOI:
10.1038/s41467-020-16324-3
PMID:
32424145
Czasopismo naukowe
Photosynthetic light-harvesting complexes (LHCs) play a pivotal role in collecting solar energy for photochemical reactions in photosynthesis. One of the major LHCs are fucoxanthin chlorophyll a/c-binding proteins (FCPs) present in diatoms, a group of organisms having important contribution to the global carbon cycle. Here, we report a 2.40-Å resolution structure of the diatom photosystem I (PSI)-FCPI supercomplex by cryo-electron microscopy. The supercomplex is composed of 16 different FCPI subunits surrounding a monomeric PSI core. Each FCPI subunit showed different protein structures with different pigment contents and binding sites, and they form a complicated pigment-protein network together with the PSI core to harvest and transfer the light energy efficiently. In addition, two unique, previously unidentified subunits were found in the PSI core. The structure provides numerous insights into not only the light-harvesting strategy in diatom PSI-FCPI but also evolutionary dynamics of light harvesters among oxyphototrophs.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies