Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Motor learning promotes remyelination via new and surviving oligodendrocytes.

Tytuł:
Motor learning promotes remyelination via new and surviving oligodendrocytes.
Autorzy:
Bacmeister CM; Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
Barr HJ; Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
McClain CR; Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
Thornton MA; Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
Nettles D; Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA.
Welle CG; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA.
Hughes EG; Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA. .
Źródło:
Nature neuroscience [Nat Neurosci] 2020 Jul; Vol. 23 (7), pp. 819-831. Date of Electronic Publication: 2020 May 18.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: <2002->: New York, NY : Nature Publishing Group
Original Publication: New York, NY : Nature America Inc., c1998-
MeSH Terms:
Learning/*physiology
Motor Activity/*physiology
Oligodendroglia/*physiology
Recovery of Function/*physiology
Remyelination/*physiology
Animals ; Cell Differentiation/physiology ; Cuprizone/toxicity ; Demyelinating Diseases/chemically induced ; Mice ; Mice, Inbred C57BL ; Monoamine Oxidase Inhibitors/toxicity ; Motor Cortex/physiology ; Oligodendrocyte Precursor Cells/physiology
References:
Reich, D. S., Lucchinetti, C. F. & Calabresi, P. A. Multiple sclerosis. N. Engl. J. Med. 378, 169–180 (2018). (PMID: 293206526942519)
Hauser, S. L., Chan, J. R. & Oksenberg, J. R. Multiple sclerosis: prospects and promise. Ann. Neurol. 74, 317–327 (2013). (PMID: 23955638)
Périer, O. & Grégoire, A. Electron microscopic features of multiple sclerosis lesions. Brain 88, 937–952 (1965). (PMID: 5864468)
Tripathi, R. B., Rivers, L. E., Young, K. M., Jamen, F. & Richardson, W. D. NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. J. Neurosci. 30, 16383–16390 (2010). (PMID: 211235843063541)
Prineas, J. W. & Connell, F. Remyelination in multiple sclerosis. Ann. Neurol. 5, 22–31 (1979). (PMID: 426466)
Green, A. J. et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet 390, 2481–2489 (2017). (PMID: 29029896)
Jäkel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019). (PMID: 307479186544546)
Yeung, M. S. Y. et al. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566, 538–542 (2019). (PMID: 306750586420067)
Crawford, A. H. et al. Pre-existing mature oligodendrocytes do not contribute to remyelination following toxin-induced spinal cord demyelination. Am. J. Pathol. 186, 511–516 (2016). (PMID: 267733504816704)
Duncan, I. D. et al. The adult oligodendrocyte can participate in remyelination. Proc. Natl Acad. Sci. USA 115, E11807–E11816 (2018). (PMID: 30487224)
Hughes, E. G. & Appel, B. The cell biology of CNS myelination. Curr. Opin. Neurobiol. 39, 93–100 (2016). (PMID: 271524494987163)
Scholz, J., Klein, M. C., Behrens, T. E. J. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–1371 (2009). (PMID: 198207072770457)
Sampaio-Baptista, C. et al. Motor skill learning induces changes in white matter microstructure and myelination. J. Neurosci. 33, 19499–19503 (2013). (PMID: 243367163858622)
Beer, S., Khan, F. & Kesselring, J. Rehabilitation interventions in multiple sclerosis: an overview. J. Neurol. 259, 1994–2008 (2012). (PMID: 22772357)
Albert, M., Antel, J., Brück, W. & Stadelmann, C. Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol. 17, 129–138 (2007). (PMID: 17388943)
Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014). (PMID: 247279824096908)
McKenzie, I. A. et al. Motor skill learning requires active central myelination. Science 346, 318–322 (2014). (PMID: 253243816324726)
Xu, T. et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915–919 (2009). (PMID: 199462672844762)
Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J. & Bergles, D. E. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat. Neurosci. 21, 696–706 (2018). (PMID: 295560255920726)
Longair, M. H., Baker, D. A. & Armstrong, J. D. Simple neurite tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27, 2453–2454 (2011). (PMID: 21727141)
Harms, K. J., Rioult-Pedotti, M. S., Carter, D. R. & Dunaevsky, A. Transient spine expansion and learning-induced plasticity in layer 1 primary motor cortex. J. Neurosci. 28, 5686–5690 (2008). (PMID: 185090292793590)
Hill, R. A., Li, A. M. & Grutzendler, J. Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat. Neurosci. 21, 683–695 (2018). (PMID: 295560315920745)
Hughes, E. G., Kang, S. H., Fukaya, M. & Bergles, D. E. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 16, 668–676 (2013). (PMID: 236245153807738)
Franklin, R. J. M. & ffrench-Constant, C. Regenerating CNS myelin—from mechanisms to experimental medicines. Nat. Rev. Neurosci. 18, 753–769 (2017).
Baxi, E. G. et al. Lineage tracing reveals dynamic changes in oligodendrocyte precursor cells following cuprizone-induced demyelination. Glia 65, 2087–2098 (2017). (PMID: 289406455761347)
Johnson, E. S. & Ludwin, S. K. Evidence for a ‘dying-back’ gliopathy in demyelinating disease. Ann. Neurol. 9, 301–305 (1981). (PMID: 7224593)
Buzsáki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446–451 (2004). (PMID: 15114356)
Hamada, M. S. & Kole, M. H. P. Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability. J. Neurosci. 35, 7272–7286 (2015). (PMID: 259482754420788)
Mei, F. et al. Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. eLife 5, e18246 (2016). (PMID: 276717345039026)
Hill, R. A., Patel, K. D., Goncalves, C. M., Grutzendler, J. & Nishiyama, A. Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat. Neurosci. 17, 1518–1527 (2014). (PMID: 252624954275302)
Picard, N., Matsuzaka, Y. & Strick, P. L. Extended practice of a motor skill is associated with reduced metabolic activity in M1. Nat. Neurosci. 16, 1340–1347 (2013). (PMID: 239129473757119)
Harris, J. J. & Attwell, D. The energetics of CNS white matter. J. Neurosci. 32, 356–371 (2012). (PMID: 222192963272449)
Ortiz, F. C. et al. Neuronal activity in vivo enhances functional myelin repair. JCI Insight 4, e123434 (2019). (PMID: 6538342)
Geraghty, A. C. et al. Loss of adaptive myelination contributes to methotrexate chemotherapy-related cognitive impairment. Neuron 103, 250–265.e8 (2019). (PMID: 31122677)
Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016). (PMID: 272841955221728)
Burke, S. N. & Barnes, C. A. Neural plasticity in the ageing brain. Nat. Rev. Neurosci. 7, 30–40 (2006). (PMID: 16371948)
Ford, M. C. et al. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat. Commun. 6, 8073 (2015). (PMID: 263050154560803)
You, H. et al. Aβ neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proc. Natl Acad. Sci. USA 109, 1737–1742 (2012). (PMID: 22307640)
Saxena, S. & Caroni, P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71, 35–48 (2011). (PMID: 21745636)
Witte, M. E. et al. Calcium Influx through plasma-membrane nanoruptures drives axon degeneration in a model of multiple sclerosis. Neuron 101, 615–624.e5 (2019). (PMID: 306867336389591)
Werner, C. T., Williams, C. J., Fermelia, M. R., Lin, D.-T. & Li, Y. Circuit mechanisms of neurodegenerative diseases: a new frontier with miniature fluorescence microscopy. Front. Neurosci. 13, 1174 (2019). (PMID: 317367016834692)
Potter, L. E. et al. Altered excitatory–inhibitory balance within somatosensory cortex is associated with enhanced plasticity and pain sensitivity in a mouse model of multiple sclerosis. J. Neuroinflammation 13, 142 (2016). (PMID: 272829144901403)
Van den Bos, M. A. J. et al. Imbalance of cortical facilitatory and inhibitory circuits underlies hyperexcitability in ALS. Neurology 91, e1669–e1676 (2018). (PMID: 30282772)
Kim, J. et al. Changes in the excitability of neocortical neurons in a mouse model of amyotrophic lateral sclerosis are not specific to corticospinal neurons and are modulated by advancing disease. J. Neurosci. 37, 9037–9053 (2017). (PMID: 288216435597984)
Ellwardt, E. et al. Maladaptive cortical hyperactivity upon recovery from experimental autoimmune encephalomyelitis. Nat. Neurosci. 21, 1392–1403 (2018). (PMID: 30258239)
Denève, S. & Machens, C. K. Efficient codes and balanced networks. Nat. Neurosci. 19, 375–382 (2016). (PMID: 26906504)
Hines, J. H., Ravanelli, A. M., Schwindt, R., Scott, E. K. & Appel, B. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18, 683–689 (2015). (PMID: 258499874414883)
Mensch, S. et al. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat. Neurosci. 18, 628–630 (2015). (PMID: 258499854427868)
Hughes, A. N. & Appel, B. Oligodendrocytes express synaptic proteins that modulate myelin sheath formation. Nat. Commun. 10, 4125 (2019). (PMID: 315115156739339)
Mori, S. & Leblond, C. P. Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats. J. Comp. Neurol. 139, 1–28 (1970). (PMID: 4191626)
Shen, S., Li, J. & Casaccia-Bonnefil, P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J. Cell Biol. 169, 577–589 (2005). (PMID: 158972622171688)
Schain, A. J., Hill, R. A. & Grutzendler, J. Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy. Nat. Med. 20, 443–449 (2014). (PMID: 246815983981936)
Parslow, A., Cardona, A. & Bryson-Richardson, R. J. Sample drift correction following 4D confocal time-lapse imaging. J. Vis. Exp. 86, e51086 (2014).
Peters, A. & Sethares, C. Oligodendrocytes, their progenitors and other neuroglial cells in the aging primate cerebral cortex. Cereb. Cortex 14, 995–1007 (2004). (PMID: 15115733)
Czopka, T., ffrench-Constant, C. & Lyons, D. A. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev. Cell 25, 599–609 (2013). (PMID: 238066174013507)
Watkins, T. A., Emery, B., Mulinyawe, S. & Barres, B. A. Distinct stages of myelination regulated by γ-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60, 555–569 (2008). (PMID: 190382142650711)
Schmitzer-Torbert, N., Jackson, J., Henze, D., Harris, K. & Redish, A. D. Quantitative measures of cluster quality for use in extracellular recordings. Neuroscience 131, 1–11 (2005). (PMID: 15680687)
Grant Information:
T32 NS099042 United States NS NINDS NIH HHS; R21 NS106432 United States NS NINDS NIH HHS; P30 NS048154 United States NS NINDS NIH HHS; R01 NS086839 United States NS NINDS NIH HHS; R21 EY029458 United States EY NEI NIH HHS; R01 NS115975 United States NS NINDS NIH HHS
Substance Nomenclature:
0 (Monoamine Oxidase Inhibitors)
5N16U7E0AO (Cuprizone)
Entry Date(s):
Date Created: 20200520 Date Completed: 20201007 Latest Revision: 20210518
Update Code:
20240105
PubMed Central ID:
PMC7329620
DOI:
10.1038/s41593-020-0637-3
PMID:
32424285
Czasopismo naukowe
Oligodendrocyte loss in neurological disease leaves axons vulnerable to damage and degeneration, and activity-dependent myelination may represent an endogenous mechanism to improve remyelination following injury. Here we report that, while learning a forelimb reach task transiently suppresses oligodendrogenesis, it subsequently increases oligodendrocyte precursor cell differentiation, oligodendrocyte generation and myelin sheath remodeling in the forelimb motor cortex. Immediately following demyelination, neurons exhibit hyperexcitability, learning is impaired and behavioral intervention provides no benefit to remyelination. However, partial remyelination restores neuronal and behavioral function, allowing learning to enhance oligodendrogenesis, remyelination of denuded axons and the ability of surviving oligodendrocytes to generate new myelin sheaths. Previously considered controversial, we show that sheath generation by mature oligodendrocytes is not only possible but also increases myelin pattern preservation following demyelination, thus presenting a new target for therapeutic interventions. Together, our findings demonstrate that precisely timed motor learning improves recovery from demyelinating injury via enhanced remyelination from new and surviving oligodendrocytes.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies