Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Association between Objective Activity Intensity and Heart Rate Variability: Cardiovascular Disease Risk Factor Mediation (CARDIA).

Tytuł:
Association between Objective Activity Intensity and Heart Rate Variability: Cardiovascular Disease Risk Factor Mediation (CARDIA).
Autorzy:
Pope ZC; Division of Epidemiology and Community Health, University of Minnesota, School of Public Health, Minneapolis, MN.
Gabriel KP
Whitaker KM; Department of Health and Human Physiology and Department of Epidemiology, University of Iowa, Iowa City, IA.
Chen LY; Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN.
Schreiner PJ; Division of Epidemiology and Community Health, University of Minnesota, School of Public Health, Minneapolis, MN.
Jacobs DR Jr; Division of Epidemiology and Community Health, University of Minnesota, School of Public Health, Minneapolis, MN.
Sternfeld B; Kaiser Permanente Division of Research, Oakland, CA.
Carr JJ; Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN.
Lloyd-Jones DM; Feinberg School of Medicine, Northwestern University, Chicago, IL.
Pereira MA; Division of Epidemiology and Community Health, University of Minnesota, School of Public Health, Minneapolis, MN.
Źródło:
Medicine and science in sports and exercise [Med Sci Sports Exerc] 2020 Jun; Vol. 52 (6), pp. 1314-1321.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, N.I.H., Intramural
Język:
English
Imprint Name(s):
Publication: Hagerstown, Md : Lippincott Williams & Wilkins
Original Publication: Madison, Wis., American College of Sports Medicine.
MeSH Terms:
Cardiorespiratory Fitness*
Heart Rate*
Cardiovascular Diseases/*physiopathology
Exercise/*physiology
Actigraphy/instrumentation ; Adult ; Autonomic Nervous System/physiology ; Blood Glucose/metabolism ; Cardiovascular Diseases/prevention & control ; Female ; Fitness Trackers ; Glucose Tolerance Test ; Humans ; Insulin/blood ; Linear Models ; Male ; Middle Aged ; Risk Factors
References:
Tesfaye S, Malik R, Boulton A, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33:2285–93.
Shaffer F, Ginsberg J. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258.
Shah SA, Kambur T, Chan C, Herrington DM, Liu K, Shah SJ. Relation of short-term heart rate variability to incident heart failure (from the multi-ethnic study of atherosclerosis). Am J Cardiol. 2013;112(4):533–40.
Kubota Y, Chen LY, Whitsel EA, Folsom AR. Heart rate variability and lifetime risk of cardiovascular disease: the atherosclerosis risk in communities study. Ann Epidemiol. 2017;27(10):619–25.e2.
Fang SC, Wu YL, Tsai PS. Heart rate variability and risk of all-cause death and cardiovascular events in patients with cardiovascular disease: a meta-analysis of cohort studies. Biol Res Nurs. 2019;22(1):45–56.
U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans. 2nd ed. Washington, D.C.: U.S. Department of Health and Human Services; 2018.
Buchheit M, Simon C, Charloux A, Doutreleau S, Piquard F, Brandenberger G. Heart rate variability and intensity of habitual physical activity in middle-aged persons. Med Sci Sports Exerc. 2005;37(9):1530–4.
May R, McBerty V, Zaky A, Gianotti M. Vigorous physical activity predicts higher heart rate variability among younger adults. J Physiol Anthropol. 2017;36(1):24.
Ghardashi-Afousi A, Holisaz M, Shirvani H, Pishgoo B. The effects of low-volume high-intensity interval versus moderate intensity continuous training on heart rate variability, and hemodynamic and echocardiography indices in men after coronary artery bypass grafting: a randomized clinical trial study. ARYA Atheroscler. 2018;14(6):260–71.
Macagnan FE, Feoli AMP, Russomano T. Acute physical effort increases sympathovagal balance responses to autonomic stimulation in metabolic syndrome. Metab Syndr Relat Disord. 2019;17(1):67–74.
Callaghan BC, Little AA, Feldman EL, Hughes RA. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev. 2012;6:CD007543.
Bassi D, Arakelian V, Mendes R, et al. Poor glycemic control impacts linear and non-linear dynamics of heart rate in DM type 2. Rev Bras Med Esporte. 2015;21(4):313–7.
Svensson M, Lindmark S, Wiklund U, et al. Alterations in heart rate variability during everyday life are linked to insulin resistance. A role of dominating sympathetic over parasympathetic nerve activity? Cardiovasc Diabetol. 2016;15:91.
Saito I, Hitsumoto S, Maruyama K, et al. Heart rate variability, insulin resistance, and insulin sensitivity in Japanese adults: the Toon health study. J Epidemiol. 2015;25(9):583–91.
Schroeder E, Chambless L, Liao D, et al. Diabetes, glucose, insulin, and heart rate variability. Diabetes Care. 2005;28:668–74.
Takuma K, Fang F, Zhang W, et al. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci U S A. 2009;106:20021–6.
Witzke K, Vinik A, Grant L, et al. Loss of receptor for advanced glycation end products (RAGE) defense. Diabetes Care. 2011;34:1617–21.
Schmidt A, Yan S, Yan S, Stern D. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest. 2001;108:949–55.
Vinik A, Erbas T, Casellini C. Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J Diabetes Investig. 2013;4(1):4–18.
Huggett RJ, Hogarth AJ, Mackintosh AF, Mary DA. Sympathetic nerve hyperactivity in non-diabetic offspring of patients with type 2 diabetes mellitus. Diabetologia. 2006;49:2741–4.
Thorp AA, Schlaich MP. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J Diabetes Res. 2015;2015:341583.
Lieb DC, Parson HK, Mamikunian G, Vinik AI. Cardiac autonomic imbalance in newly diagnosed and established diabetes is associated with markers of adipose tissue inflammation. Exp Diabetes Res. 2012;2012:878760.
Ciobanu D, Craciun A, Veresiu I, Bala C, Roman G. Ambulatory heart rate variability correlates with high-sensitivity c-reactive protein in type 2 diabetes and control subjects. IFMBE Proceedings. 2017;59. doi: 10.1007/978-3-319-52875-5_4. (PMID: 10.1007/978-3-319-52875-5_4)
Herder C, Schamarek I, Nowotny B, et al. Inflammatory markers are associated with cardiac autonomic dysfunction in recent-onset type 2 diabetes. Heart. 2017;103:63–70.
Stein P, Barzilay J, Chaves P, et al. Higher levels of inflammation factors and greater insulin resistance are independently associated with higher heart rate and lower heart rate variability in normoglycemic older individuals: the cardiovascular health study. J Am Geriatr Soc. 2008;56:315–21.
Chen L, Zmora R, Duval S, Chow L, Lloyd-Jones D, Schreiner P. Cardiorespiratory fitness, adiposity, and heart rate variability: the coronary artery risk development in young adults study. Med Sci Sports Exerc. 2019;51(3):509–14.
Dyrstad SM, Hansen BH, Holme IM, Anderssen SA. Comparison of self-reported versus accelerometer-measured physical activity. Med Sci Sports Exerc. 2014;46(1):99–106.
Ali A, Boutjdir M, Aromolaran A. Cardiolipotoxicity, inflammation, and arrhythmias: role for interleukin-6 molecular mechanisms. Front Physiol. 2019;9:1866.
Schlaich M, Straznicky N, Lambert E, Lambert G. Metabolic syndrome: a sympathetic disease? Lancet Diabetes Endocrinol. 2015;3:148–57.
Straznicky NE, Eikelis N, Lambert EA, Esler MD. Mediators of sympathetic activation in metabolic syndrome obesity. Curr Hypertens Rep. 2008;10:440–7.
Thayer J, Yamamoto S, Brosschot J. The relationship of autonomic imbalance, heart rate variability, and cardiovascular disease risk factors. Int J Cardiol. 2010;141(2):122–31.
Friedman GD, Cutter GR, Donahue RP, et al. CARDIA: study design, recruitment, and some characteristics of the examined subjects. J Clin Epidemiol. 1988;41(1):1105–16.
Carnethon M, Sternfeld B, Schreiner P, et al. Association of 20-year changes in cardiorespiratory fitness with incident type 2 diabetes: the coronary artery risk development in young adults (CARDIA) fitness study. Diabetes Care. 2009;32:1284–8.
Lee I-M, Shiroma E, Kamada M, Bassett D Jr, Matthews C, Buring J. Association of step volume and intensity with all-cause mortality in older women. JAMA Intern Med. 2019;179(8):1105–12.
Troiano R, Berrigan D, Dodd K, Masse L, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.
Sasaki J, John D, Freedson P. Validition and comparison of actigraph activity monitors. J Sci Med Sport. 2011;14(5):411–6.
Maddison R, Jiang Y, Foley L, Scragg R, Direito A, Olds T. The association between the activity profile and cardiovascular risk. J Sci Med Sport. 2016;19:605–10.
Schreiber-Gregory D. Multicollinearity: What Is It, Why Should We Care, and How Can It be Controlled? Cary, NC: SAS; 2017. [cited 2019 June 22]. Available from: https://support.sas.com/resources/papers/proceedings17/1404-2017.pdf.
Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson P. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc. 2011;43(8):1561–7.
Munoz ML, van Roon A, Riese H, et al. Validity of (ultra-)short recordings for heart rate variability measurements. PLoS One. 2015;10(9):e0138921.
Nussinovitch U, Elishkevitz K, Katz K, et al. Reliability of ultra-short ecg indices for heart rate variability. Ann Noninvasive Electrocardiol. 2011;16(2):117–22.
Meyer K, Sijtsma F, Nettleton J, et al. Dietary patterns are associated with plasma F2-isoprostanes in an observational cohort study of adults. Free Radic Biol Med. 2013;57:201–9.
Soares-Miranda L, Sattelmair J, Chaves P, et al. Physical activity and heart rate variability in older adults: the cardiovascular health study. Circulation. 2014;129:2100–10.
Valeri L, VanderWeele T. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol Methods. 2013;18(2):137–50.
de Geus E, Gianaros P, Brindle R, Jennings J, Berntson GG. Should heart rate variability be “corrected” for heart rate? Biological, quantitative, and interpretive considerations. Psychophysiology. 2019;56(2):e13287.
LaCroix A, Bellettiere J, Rillamas-Sun E, et al. Association of light physical activity measured by accelerometry and incidence of coronary heart disease and cardiovascular disease in older women. JAMA Netw Open. 2019;2(3):e190419.
Kenney W, Wilmore J, Costill D. Adaptations to aerobic and anaerobic training. In: Kenney W, Wilmore J, Costill D, editors. Physiology of Sport and Exercise. 6th ed. Champaign, IL: Human Kinetics; 2015. pp. 261–91.
Schwarz PEH, Timpel P, Harst L, et al. Blood sugar regulation for cardiovascular health promotion and disease prevention. J Am Coll Cardiol. 2018;72(15):1829–44.
American Diabetes Assoiation. Standards of medical care in diabetes-2018. Diabetes Care. 2018;41(1 Suppl):S1–172.
Van Dyck D, Cerin E, De Bourdeaudhuij I, et al. International study of objectively measured physical activity and sedentary time with body mass index and obesity: IPEN adult study. Int J Obes (Lond). 2015;39(2):199–207.
Grant Information:
HHSN268201800003I United States HL NHLBI NIH HHS; R01 HL098445 United States HL NHLBI NIH HHS; HHSN268201800005I United States HL NHLBI NIH HHS; HHSN268201800006I United States HL NHLBI NIH HHS; R01 HL078972 United States HL NHLBI NIH HHS; HHSN268201800004I United States HL NHLBI NIH HHS; T32 HL007779 United States HL NHLBI NIH HHS; HHSN268201800007I United States HL NHLBI NIH HHS
Substance Nomenclature:
0 (Blood Glucose)
0 (Insulin)
Entry Date(s):
Date Created: 20200520 Date Completed: 20201106 Latest Revision: 20210602
Update Code:
20240105
PubMed Central ID:
PMC7275933
DOI:
10.1249/MSS.0000000000002259
PMID:
32427750
Czasopismo naukowe
Purpose: We evaluated the associations between accelerometer-estimated physical activity (PA) intensity and heart rate variability (HRV) and examined mediation of these associations by glycemic control indices and other cardiovascular disease risk factors.
Methods: Data were from 1668 participants (X[Combining Overline]age = 45.9 ± 3.5 yr, 58.0% female, 39.9% black) who participated in year 20 (2005-2006) of the Coronary Artery Risk Development in Young Adults Fitness Study. The ActiGraph 7164 estimated participants' mean minutes per day of vigorous-intensity PA (VPA), moderate-intensity PA (MPA), and light-intensity PA (LPA) over 7 d. Three sequential 10-s 12-lead ECG strips were used to derive standard deviation of all normal RR intervals (SDNN) and root mean square of all successive RR intervals (rMSSD) HRV. Mediators representing glycemic control indices included fasting glucose, fasting insulin, and 2-h oral glucose tolerance, with other mediators being traditional cardiovascular disease risk factors. Multiple linear regression assessed independent associations of PA intensity with HRV per 1-SD. Mediation analyses computed the proportion of the PA-HRV association attributable to physiological mediators.
Results: Participants averaged 2.7 ± 6.2 min·d, 33.0 ± 22.0 min·d, and 360.2 ± 83.8 min·d of VPA, MPA, and LPA, respectively, with mean values for SDNN (32.6 ± 22.4 ms) and rMSSD (34.0 ± 24.8 ms) similar. After adjustment for demographic and lifestyle behaviors, VPA was associated with both HRV metrics (SDNN: std beta = 0.06 [0.03, 0.10]; rMSSD: std beta = 0.08 [0.05, 0.12]) and LPA with rMSSD only (std beta = 0.05 [0.01, 0.08]). Fasting insulin and glucose mediated 11.6% to 20.7% of the association of VPA and LPA with HRV, with triglycerides also potentially mediating these associations (range, 9.6%-13.4%).
Conclusions: Accelerometer-estimated VPA was associated with higher (i.e., improved) HRV. Light-intensity PA also demonstrated a positive association. Mediation analyses suggested these associations may be most attributable to glucose-insulin dynamics.
Erratum in: Med Sci Sports Exerc. 2020 Sep 1;52(9):2060. (PMID: 33577240)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies