Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Preparation of cyclohexene isotopologues and stereoisotopomers from benzene.

Tytuł:
Preparation of cyclohexene isotopologues and stereoisotopomers from benzene.
Autorzy:
Smith JA; University of Virginia Department of Chemistry, Charlottesville, VA, USA.
Wilson KB; University of Virginia Department of Chemistry, Charlottesville, VA, USA.
Sonstrom RE; University of Virginia Department of Chemistry, Charlottesville, VA, USA.
Kelleher PJ; University of Virginia Department of Chemistry, Charlottesville, VA, USA.
Welch KD; University of Virginia Department of Chemistry, Charlottesville, VA, USA.
Pert EK; University of Virginia Department of Chemistry, Charlottesville, VA, USA.
Westendorff KS; University of Virginia Department of Chemistry, Charlottesville, VA, USA.
Dickie DA; University of Virginia Department of Chemistry, Charlottesville, VA, USA.
Wang X; Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Pate BH; University of Virginia Department of Chemistry, Charlottesville, VA, USA.
Harman WD; University of Virginia Department of Chemistry, Charlottesville, VA, USA. .
Źródło:
Nature [Nature] 2020 May; Vol. 581 (7808), pp. 288-293. Date of Electronic Publication: 2020 May 20.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
MeSH Terms:
Chemistry Techniques, Synthetic*
Benzene/*chemistry
Cyclohexenes/*chemical synthesis
Cyclohexenes/*chemistry
Deuterium/*chemistry
Pharmaceutical Preparations/*chemical synthesis
Pharmaceutical Preparations/*chemistry
Databases, Chemical ; Kinetics ; Molecular Structure ; Stereoisomerism ; Tetrabenazine/analogs & derivatives ; Tetrabenazine/chemical synthesis ; Tetrabenazine/chemistry ; Tungsten/chemistry
References:
Gant, T. G. Using deuterium in drug discovery: leaving the label in the drug. J. Med. Chem. 57, 3595–3611 (2014). (PMID: 10.1021/jm4007998)
Dean, M. & Sung, V. W. Review of deutetrabenazine: a novel treatment for chorea asociated with Huntington’s disease. Drug Des. Devel. Ther. 12, 313–319 (2018). (PMID: 10.2147/DDDT.S138828)
Thibblin, A. & Ahlberg, P. Reaction branching and extreme kinetic isotope effects in the study of reaction mechanisms. Chem. Soc. Rev. 18, 209–224 (1989). (PMID: 10.1039/cs9891800209)
Thibblin, A. Unusually large kinetic deuterium isotope effects on oxidation reactions. 1. the mechanism of hydroxide-catalysed permanganate oxidation of PhCD(CF 3 )OH and PhCD(CH 3 )OH in water. J. Phys. Org. Chem. 8, 186–190 (1995). (PMID: 10.1002/poc.610080309)
Nelson, S. D. & Trager, W. F. The use of deuterium isotope effects to probe the active site properties, mechanism, of cyctochrome P450-catalyzed reactions, and mechanisms of metabolically dependent toxicity. Drug Metab. Dispos. 31, 1481–1497 (2003). (PMID: 10.1124/dmd.31.12.1481)
Loh, Y. Y. et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017). (PMID: 10.1126/science.aap9674)
Pony Yu, R., Hesk, D., Rivera, N., Pelczer, I. & Chirik, P. J. Iron-catalysed tritiation of pharmaceuticals. Nature 529, 195–199 (2016). (PMID: 10.1038/nature16464)
Baldwin, J. E., Kiemle, D. J. & Kostikov, A. P. Quantitative analyses of stereoisomeric 3,4-d 2 -cyclohexenes in the presence of 3,6-d 2 -cyclohexenes. J. Org. Chem. 74, 3866–3874 (2009). (PMID: 10.1021/jo900430w)
Eisen, M. S. & Marks, T. J. Supported organoactinide complexes as heterogeneous catalysts. A kinetic and mechanistic study of facile arene hydrogenation. J. Am. Chem. Soc. 114, 10358–10368 (1992). (PMID: 10.1021/ja00052a036)
Jones, R. A. & Seeberger, M. H. Synthesis of polymer-supported transition metal catalysts via phosphido linkages: heterogeneous catalysts for the hydrogenation of aromatic compounds under mild conditions. J. Chem. Soc. Chem. Commun. 373–374 (1985).
Joannou, M. V., Bezdek, M. J. & Chirik, P. J. Pyridine(diimine) molybdenum-catalyzed hydrogenation of arenes and hindered olefins: insights into precatalyst activation and deactivation pathways. ACS Catal. 8, 5276–5285 (2018). (PMID: 10.1021/acscatal.8b00924)
Harman, W. D. & Taube, H. The selective hydrogenation of benzene to cyclohexene on pentaammineosmium(II). J. Am. Chem. Soc. 110, 7906–7907 (1988). (PMID: 10.1021/ja00231a068)
Liebov, B. K. & Harman, W. D. Group 6 dihapto-coordinate dearomatization agents for organic synthesis. Chem. Rev. 117, 13721–13755 (2017). (PMID: 10.1021/acs.chemrev.7b00480)
Welch, K. D. et al. Large-scale syntheses of several synthons to the dearomatization agent {TpW(NO)(PMe 3 )} and convenient spectroscopic tools for product analysis. Organometallics 26, 2791–2794 (2007). (PMID: 10.1021/om070034g)
Lankenau, A. W. et al. Enantioenrichment of a tungsten dearomatization agent utilizing chiral acids. J. Am. Chem. Soc. 137, 3649–3655 (2015). (PMID: 10.1021/jacs.5b00490)
Harrison, D. P. et al. Hyperdistorted tungsten allyl complexes and their stereoselective deprotonation to form dihapto-coordinated dienes. Organometallics 30, 2587–2597 (2011). (PMID: 10.1021/om200183m)
Lis, E. C. et al. The uncommon reactivity of dihapto-coordinated nitrile, ketone, and alkene ligands when bound to a powerful π-base. Organometallics 25, 5051–5058 (2006). (PMID: 10.1021/om060434o)
Arashiba, K. et al. Electrophilic O-methylation of a terminal nitrosyl ligand attained by an early−late heterobimetallic effect. Organometallics 25, 560–562 (2006). (PMID: 10.1021/om0510573)
Jamison, C. J. Isotope effects on chemical shifts and coupling constants. eMagRes https://doi.org/10.1002/9780470034590.emrstm0251 (2007).
Pérez, C. et al. Broadband Fourier transform rotational spectroscopy for structure determination: the water heptamer. Chem. Phys. Lett. 571, 1–15 (2013). (PMID: 10.1016/j.cplett.2013.04.014)
Sharp, W. B., Legzdins, P. & Patrick, B. O. O-Protonation of a terminal nitrosyl group to form an η1-hydroxylimido ligand. J. Am. Chem. Soc. 123, 8143–8144 (2001). (PMID: 10.1021/ja002738m)
Llamazares, A., Schmalle, H. W. & Berke, H. Ligand-assisted heterolytic activation of hydrogen and silanes mediated by nitrosyl rhenium complexes. Organometallics 20, 5277–5288 (2001). (PMID: 10.1021/om010409c)
Leong, V. S. & Cooper, N. J. Electrophilic activation of benzene in [Cr(η , as a selective reducing agent. J. Heterocycl. Chem. 25, 1383–1385 (1988). (PMID: 10.1002/jhet.5570250522)
Wilson, K. B. et al. Sequential tandem addition to a tungsten–trifluorotoluene complex: a versatile method for the preparation of highly functionalized trifluoromethylated cyclohexenes. J. Am. Chem. Soc. 139, 11401–11412 (2017). (PMID: 10.1021/jacs.7b05118)
Murray, R. W., Singh, M., Williams, B. L. & Moncrieff, H. M. Diastereoselectivity in the epoxidation of substituted cyclohexenes by dimethyldioxirane. J. Org. Chem. 61, 1830–1841 (1996). (PMID: 10.1021/jo951864j)
Leiris, S., Lucas, M., Dupuy d’Angeac, A. & Morère, A. Synthesis and biological evaluation of cyclic nitrogen mustards based on carnitine framework. Eur. J. Med. Chem. 45, 4140–4148 (2010). (PMID: 10.1016/j.ejmech.2010.06.003)
Wilson, K. B. et al. Highly functionalized cyclohexenes derived from benzene: sequential tandem addition reactions promoted by tungsten. J. Org. Chem. 84, 6094–6116 (2019). (PMID: 10.1021/acs.joc.9b00279)
Grant Information:
R01 GM132205 United States GM NIGMS NIH HHS; 1R01GM132205-01 United States NH NIH HHS
Substance Nomenclature:
0 (Cyclohexenes)
0 (Pharmaceutical Preparations)
12L0P8F7GN (cyclohexene)
AR09D82C7G (Deuterium)
J64922108F (Benzene)
P341G6W9NB (deutetrabenazine)
V9306CXO6G (Tungsten)
Z9O08YRN8O (Tetrabenazine)
Entry Date(s):
Date Created: 20200521 Date Completed: 20200629 Latest Revision: 20210325
Update Code:
20240105
PubMed Central ID:
PMC7250047
DOI:
10.1038/s41586-020-2268-y
PMID:
32433618
Czasopismo naukowe
The hydrogen isotopes deuterium (D) and tritium (T) have become essential tools in chemistry, biology and medicine 1 . Beyond their widespread use in spectroscopy, mass spectrometry and mechanistic and pharmacokinetic studies, there has been considerable interest in incorporating deuterium into drug molecules 1 . Deutetrabenazine, a deuterated drug that is promising for the treatment of Huntington's disease 2 , was recently approved by the United States' Food and Drug Administration. The deuterium kinetic isotope effect, which compares the rate of a chemical reaction for a compound with that for its deuterated counterpart, can be substantial 1,3,4 . The strategic replacement of hydrogen with deuterium can affect both the rate of metabolism and the distribution of metabolites for a compound 5 , improving the efficacy and safety of a drug. The pharmacokinetics of a deuterated compound depends on the location(s) of deuterium. Although methods are available for deuterium incorporation at both early and late stages of the synthesis of a drug 6,7 , these processes are often unselective and the stereoisotopic purity can be difficult to measure 7,8 . Here we describe the preparation of stereoselectively deuterated building blocks for pharmaceutical research. As a proof of concept, we demonstrate a four-step conversion of benzene to cyclohexene with varying degrees of deuterium incorporation, via binding to a tungsten complex. Using different combinations of deuterated and proteated acid and hydride reagents, the deuterated positions on the cyclohexene ring can be controlled precisely. In total, 52 unique stereoisotopomers of cyclohexene are available, in the form of ten different isotopologues. This concept can be extended to prepare discrete stereoisotopomers of functionalized cyclohexenes. Such systematic methods for the preparation of pharmacologically active compounds as discrete stereoisotopomers could improve the pharmacological and toxicological properties of drugs and provide mechanistic information related to their distribution and metabolism in the body.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies