Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Non-spatial context-driven search.

Tytuł:
Non-spatial context-driven search.
Autorzy:
Kim S; Department of Psychology, Louisiana State University, 239 Audubon Hall, Baton Rouge, LA, 70803, USA.
Beck MR; Department of Psychology, Louisiana State University, 239 Audubon Hall, Baton Rouge, LA, 70803, USA. .
Źródło:
Attention, perception & psychophysics [Atten Percept Psychophys] 2020 Aug; Vol. 82 (6), pp. 2876-2892.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2011- : New York : Springer
Original Publication: Austin, Tex. : Psychonomic Society
MeSH Terms:
Attention*
Color Perception*
Color ; Cues ; Humans ; Reaction Time
References:
Anderson, B. A. (2015). Value-driven attentional priority is context specific. Psychonomic Bulletin & Review, 22(3), 750-756.
Arita, J. T., Carlisle, N. B., & Woodman, G. F. (2012). Templates for rejection: configuring attention to ignore task-irrelevant features. Journal of experimental psychology: human perception and performance, 38(3), 580-584. (PMID: 22468723)
Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends in Cognitive Science, 16(8), 437-443.
Baker, C. I., Olson, C. R., & Behrmann, M. (2004). Role of attention and perceptual grouping in visual statistical learning. Psychological Science, 15(7), 460-466. (PMID: 15200630)
Beck, M. R., Peterson, M. S., & Vomela, M. (2006). Memory for where, but not what, is used during visual search. Journal of Experimental Psychology: Human Perception and Performance, 32(2), 235-250. (PMID: 16634668)
Beck, M. R., Angelone, B. L., Levin, D. T., Peterson, M. S., & Varakin, D. A. (2008). Implicit learning for probable changes in a visual change detection task. Consciousness and cognition, 17(4), 1192-1208. (PMID: 18684642)
Beck, M. R., Goldstein, R. R., van Lamsweerde, A. E., & Ericson, J. M. (2018). Attending globally or locally: Incidental learning of optimal visual attention allocation. Journal of experimental psychology: learning, memory, and cognition, 44(3), 387-398. (PMID: 28661177)
Belopolsky, A. V., Schreij, D., & Theeuwes, J. (2010). What is top-down about contingent capture? Attention, Perception, & Psychophysics, 72(2), 326-341.
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in cognitive sciences, 8(12), 539-546. (PMID: 15556023)
Brockmole, J. R., Castelhano, M. S., & Henderson, J. M. (2006). Contextual cueing in naturalistic scenes: Global and local contexts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 699-706. (PMID: 16822141)
Chun, M. M. (2000). Contextual cuing of visual attention. Trends in Cognitive Science, 4(5), 170–178.
Chun, M. M., & Jiang, Y. (1998). Contextual cuing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71. (PMID: 9679076)
Chun, M. M., & Jiang, Y. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10, 360– 365.
Chun, M. M., & Jiang, Y. (2003). Implicit, long-term spatial contextual memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(2), 224-234. (PMID: 12696811)
Cosman, J. D., & Vecera, S. P. (2014). Establishment of an attentional set via statistical learning. Journal of Experimental Psychology: Human Perception and Performance, 40, 1–6. (PMID: 24099589)
Den Ouden, H. E., Friston, K. J., Daw, N. D., McIntosh, A. R., & Stephan, K. E. (2008). A dual role for prediction error in associative learning. Cerebral cortex, 19(5), 1175-1185.
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual review of neuroscience, 18(1), 193-222. (PMID: 7605061)
Endo, N., & Takeda, Y. (2004). Selective learning of spatial configuration and object identity in visual search. Perception & Psychophysics, 66(2), 293-302.
Easdale, L. C., Le Pelley, M. E., & Beesley, T. (2019). The onset of uncertainty facilitates the learning of new associations by increasing attention to cues. The Quarterly Journal of Experimental Psychology, 72, 193-208. (PMID: 28766369)
Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 380-390.
Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature neuroscience, 8(12), 1784-1790. (PMID: 16286928)
Fiser, J., & Aslin, R. N. (2005). Encoding multielement scenes: Statistical learning of visual feature hierarchies. Journal of Experimental Psychology: General, 134, 521–537.
Folk, C. L., & Remington, R. W. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24, 847-858. (PMID: 9627420)
Geng, J. J., DiQuattro, N. E., & Helm, J. (2017). Distractor probability changes the shape of the attentional template. Journal of Experimental Psychology: Human Perception and Performance, 43, 1993–2007. (PMID: 28425732)
Goujon, A., Didierjean, A., & Thorpe, S. (2015). Investigating implicit statistical learning mechanisms through contextual cueing. Trends in cognitive sciences, 19(9), 524-533. (PMID: 26255970)
Gozli, D. G., Moskowitz, J. B., & Pratt, J. (2014). Visual attention to features by associative learning. Cognition, 133(2), 488-501. (PMID: 25173722)
Griffiths, O., Johnson, A. M., & Mitchell, C. J. (2011). Negative transfer in human associative learning. Psychological science, 22(9), 1198-1204. (PMID: 21859928)
Hall, G., & Pearce, J. M. (1982). Restoring the associability of a pre-exposed CS by a surprising event. The Quarterly Journal of Experimental Psychology Section B, 34(3b), 127-140.
Hyman, S. E., Malenka, R. C., & Nestler, E. J. (2006). Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci., 29, 565-598. (PMID: 16776597)
Jiang, Y., & Chun, M. M. (2001). Selective attention modulates implicit learning. The Quarterly Journal of Experimental Psychology, 54A, 1105–1124.
Jiang, Y., & Leung, A. W. (2005). Implicit learning of ignored visual context. Psychonomic Bulletin & Review, 12(1), 100-106.
Jiang, Y. V., Sigstad, H. M., & Swallow, K. M. (2013). The time course of attentional deployment in contextual cueing. Psychonomic Bulletin & Review, 20(2), 282-288.
Jiang, Y., & Wagner, L. C. (2004). What is learned in spatial contextual cuing—configuration or individual locations? Perception & Psychophysics, 66(3), 454-463.
Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive psychology, 24(2), 175-219. (PMID: 1582172)
Kaye, H., & Pearce, J. M. (1984). The strength of the orienting response during Pavlovian conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 10(1), 90-109. (PMID: 6707583)
Kerzel, D. (2019). The precision of attentional selection is far worse than the precision of the underlying memory representation. Cognition, 186, 20-31. (PMID: 30739056)
Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83(2), B35-B42. (PMID: 11869728)
Lamy, D. F., & Kristjánsson, A. (2013). Is goal-directed attentional guidance just intertrial priming? A review. Journal of Vision, 13, 1–19. (PMID: 23547103)
Leber, A. B., Gwinn, R. E., Hong, Y., & O’Toole, R. J. (2016). Implicitly learned suppression of irrelevant spatial locations. Psychonomic Bulletin & Review, 23(6), 1873-1881.
Manginelli, A. A., Langer, N., Klose, D., & Pollmann, S. (2013). Contextual cueing under working memory load: Selective interference of visuospatial load with expression of learning. Attention, Perception, & Psychophysics, 75(6), 1103-1117.
Maunsell, J. H., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in neurosciences, 29(6), 317-322. (PMID: 16697058)
Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature neuroscience, 6(5), 450-452. (PMID: 12704394)
Ogawa, H., Takeda, Y., & Kumada, T. (2007). Probing attentional modulation of contextual cueing. Visual Cognition, 15(3), 276-289.
Olson, I. R., & Chun, M. M. (2002). Perceptual constraints on implicit learning of spatial context. Visual cognition, 9(3), 273-302.
Otsuka, S., Nishiyama, M., Nakahara, F., & Kawaguchi, J. (2013). Visual statistical learning based on the perceptual and semantic information of objects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(1), 196-207. (PMID: 22686848)
Pearce, J. M., & Bouton, M. E. (2001). Theories of associative learning in animals. Annual review of psychology, 52(1), 111-139. (PMID: 11148301)
Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological review, 87(6), 532-552. (PMID: 7443916)
Rey-Mermet, A., & Meier, B. (2017). How long-lasting is the post-conflict slowing after incongruent trials? Evidence from the Stroop, Simon, and flanker tasks. Attention, Perception, & Psychophysics, 79(7), 1945-1967.
Rosenbaum, G. M., & Jiang, Y. V. (2013). Interaction between scene-based and array-based contextual cueing. Attention, Perception, & Psychophysics, 75(5), 888-899.
Swan, J. A., & Pearce, J. M. (1988). The orienting response as an index of stimulus associability in rats. Journal of Experimental Psychology: Animal Behavior Processes, 14(3), 292-301. (PMID: 3404083)
Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychological review, 113(4), 766-786. (PMID: 17014302)
Turk-Browne, N. B., Jungé, J. A., & Scholl, B. J. (2005). The automaticity of visual statistical learning. Journal of Experimental Psychology: General, 134(4), 552-564.
Vaidya, C. J., Huger, M., Howard, D. V., & Howard Jr, J. H. (2007). Developmental differences in implicit learning of spatial context. Neuropsychology, 21(4), 497-506. (PMID: 17605582)
Wills, A. J., Lavric, A., Croft, G. S., & Hodgson, T. L. (2007). Predictive learning, prediction errors, and attention: Evidence from event-related potentials and eye tracking. Journal of Cognitive Neuroscience, 19(5), 843-854. (PMID: 17488208)
Wilson, P. N., Boumphrey, P., & Pearce, J. M. (1992). Restoration of the orienting response to a light by a change in its predictive accuracy. The Quarterly Journal of Experimental Psychology Section B, 44(1b), 17-36.
Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202–238.
Contributed Indexing:
Keywords: Attention; Attention: Selective; Visual search
Entry Date(s):
Date Created: 20200522 Date Completed: 20201109 Latest Revision: 20210925
Update Code:
20240105
DOI:
10.3758/s13414-020-02063-6
PMID:
32435974
Czasopismo naukowe
Contexts that predict characteristics of search targets can guide attention by triggering attentional control settings for the characteristics. However, this context-driven search has most commonly been found in the spatial dimension. The present study explored the context-driven search when shape contexts predict the color of targets: non-spatial context-driven search. It has been demonstrated that context-driven search requires cognitive resources, and evidence of non-spatial context-driven search is found when there is an increase in cognitive resources for the shape/color associations. Thus, the scarcity of evidence for non-spatial context-driven search is potentially because the context-driven search requires more cognitive resources for shape/color associations than for spatial/spatial associations. In the current study, we violated a previously 100% consistent shape/color association with two mismatch trials to encourage allocation of cognitive resources to the shape/color association. Three experiments showed that the shape-predicted color cues captured attention more than the non-predicted color cues, indicating that shape contexts triggered attentional control settings for a color predicted by the contexts. Furthermore, the shape contexts guided attention to the predicted color only after the two mismatch trials, suggesting that expression of the non-spatial context-driven search may require cognitive resources more than the spatial context-driven search.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies