Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Structure-function investigation of 3-methylaspartate ammonia lyase reveals substrate molecular determinants for the deamination reaction.

Tytuł:
Structure-function investigation of 3-methylaspartate ammonia lyase reveals substrate molecular determinants for the deamination reaction.
Autorzy:
Saez-Jimenez V; Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
Maršić ŽS; Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.
Lambrughi M; Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.
Shin JH; Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
van Havere R; Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
Papaleo E; Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.
Olsson L; Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
Mapelli V; Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
Źródło:
PloS one [PLoS One] 2020 May 21; Vol. 15 (5), pp. e0233467. Date of Electronic Publication: 2020 May 21 (Print Publication: 2020).
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science
MeSH Terms:
Models, Molecular*
Ammonia-Lyases/*metabolism
Binding Sites ; Deamination ; Molecular Docking Simulation ; Protein Conformation ; Structure-Activity Relationship
References:
Brief Bioinform. 2022 May 13;23(3):. (PMID: 35323860)
Biochemistry. 1988 Apr 19;27(8):2953-5. (PMID: 3401458)
Bioorg Med Chem Lett. 2013 Oct 15;23(20):5721-6. (PMID: 23993776)
Arch Microbiol. 1997 Dec;168(6):457-63. (PMID: 9385136)
J Biol Chem. 1959 Feb;234(2):320-8. (PMID: 13630903)
Science. 2011 Jan 21;331(6015):334-7. (PMID: 21252347)
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):E386-91. (PMID: 25605901)
PLoS One. 2018 Feb 23;13(2):e0193503. (PMID: 29474495)
Chembiochem. 2009 Sep 4;10(13):2236-45. (PMID: 19670200)
Protein Expr Purif. 2005 May;41(1):207-34. (PMID: 15915565)
J Ind Microbiol Biotechnol. 2018 Aug;45(8):719-734. (PMID: 29654382)
Metab Eng. 2011 Mar;13(2):159-68. (PMID: 21241816)
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W126-31. (PMID: 17439967)
ACS Chem Biol. 2012 Oct 19;7(10):1618-28. (PMID: 22834890)
Curr Opin Chem Biol. 2009 Feb;13(1):26-34. (PMID: 19297237)
J Comput Chem. 2004 Oct;25(13):1605-12. (PMID: 15264254)
Sci Rep. 2018 Nov 13;8(1):16757. (PMID: 30425279)
J Chem Inf Model. 2012 Jul 23;52(7):1757-68. (PMID: 22587354)
Nat Chem Biol. 2018 Jul;14(7):664-670. (PMID: 29785057)
Biotechnol Adv. 2018 Dec;36(8):2248-2263. (PMID: 30389426)
Front Mol Biosci. 2016 Dec 15;3:78. (PMID: 28018905)
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W382-8. (PMID: 15980494)
J Biol Chem. 1989 Jan 25;264(3):1357-60. (PMID: 2492274)
J Biol Chem. 2002 Mar 8;277(10):8306-11. (PMID: 11748244)
Protein Eng Des Sel. 2015 Aug;28(8):259-67. (PMID: 26080450)
J Mol Biol. 2002 Jul 5;320(2):369-87. (PMID: 12079393)
Curr Opin Struct Biol. 2016 Feb;36:25-31. (PMID: 26773233)
Appl Microbiol Biotechnol. 2012 Apr;94(2):385-97. (PMID: 22005738)
J Comput Chem. 2010 Jan 30;31(2):455-61. (PMID: 19499576)
FEBS Open Bio. 2013 Jul 08;3:285-90. (PMID: 23905011)
Biosci Biotechnol Biochem. 1995 Jan;59(1):93-9. (PMID: 7765982)
Appl Microbiol Biotechnol. 1998 Oct;50(4):468-74. (PMID: 9830098)
Microb Cell Fact. 2016 Jan 21;15:19. (PMID: 26794242)
Structure. 2002 Jan;10(1):105-13. (PMID: 11796115)
Nat Commun. 2015 Jan 27;6:6155. (PMID: 25625196)
Biochemistry. 1992 Nov 10;31(44):10747-56. (PMID: 1420191)
Nat Chem. 2012 Apr 29;4(6):478-84. (PMID: 22614383)
J Biotechnol. 2013 Aug 20;167(2):75-84. (PMID: 22824738)
Curr Comput Aided Drug Des. 2011 Jun;7(2):146-57. (PMID: 21534921)
J Mol Biol. 2017 Feb 3;429(3):365-371. (PMID: 27964945)
PLoS Genet. 2017 Apr 19;13(4):e1006739. (PMID: 28422960)
Biochim Biophys Acta. 2014 Dec;1844(12):2203-13. (PMID: 25280393)
Substance Nomenclature:
EC 4.3.1.- (Ammonia-Lyases)
EC 4.3.1.2 (methylaspartate ammonia-lyase)
Entry Date(s):
Date Created: 20200522 Date Completed: 20200812 Latest Revision: 20240328
Update Code:
20240329
PubMed Central ID:
PMC7241714
DOI:
10.1371/journal.pone.0233467
PMID:
32437404
Czasopismo naukowe
The enzymatic reactions leading to the deamination of β-lysine, lysine, or 2-aminoadipic acid are of great interest for the metabolic conversion of lysine to adipic acid. Enzymes able to carry out these reactions are not known, however ammonia lyases (EC 4.3.1.-) perform deamination on a wide range of substrates. We have studied 3-methylaspartate ammonia lyase (MAL, EC 4.3.1.2) as a potential candidate for protein engineering to enable deamination towards β-lysine, that we have shown to be a competitive inhibitor of MAL. We have characterized MAL activity, binding and inhibition properties on six different compounds that would allow to define the molecular determinants necessary for MAL to deaminate our substrate of interest. Docking calculations showed that β-lysine as well as the other compounds investigated could fit spatially into MAL catalytic pocket, although they probably are weak or very transient binders and we identified molecular determinants involved in the binding of the substrate. The hydrophobic interactions formed by the methyl group of 3-methylaspartic acid, together with the presence of the amino group on carbon 2, play an essential role in the appropriate binding of the substrate. The results showed that β-lysine is able to fit and bind in MAL catalytic pocket and can be potentially converted from inhibitor to substrate of MAL upon enzyme engineering. The characterization of the binding and inhibition properties of the substrates tested here provide the foundation for future and more extensive studies on engineering MAL that could lead to a MAL variant able to catalyse this challenging deamination reaction.
Competing Interests: The authors have declared that no competing interests exist.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies