Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

IL-10 c.-592C>A (rs1800872) polymorphism is associated with cervical cancer.

Tytuł:
IL-10 c.-592C>A (rs1800872) polymorphism is associated with cervical cancer.
Autorzy:
Pereira APL; Department of General Pathology, Biological Sciences Center, State University of Londrina, 86057-970, Londrina, PR, Brazil.
Trugilo KP; Department of General Pathology, Biological Sciences Center, State University of Londrina, 86057-970, Londrina, PR, Brazil.
Okuyama NCM; Department of General Pathology, Biological Sciences Center, State University of Londrina, 86057-970, Londrina, PR, Brazil.
Sena MM; Department of General Pathology, Biological Sciences Center, State University of Londrina, 86057-970, Londrina, PR, Brazil.
Couto-Filho JD; Cancer Hospital of Londrina, Londrina, PR, Brazil.
Watanabe MAE; Department of General Pathology, Biological Sciences Center, State University of Londrina, 86057-970, Londrina, PR, Brazil.
de Oliveira KB; Department of General Pathology, Biological Sciences Center, State University of Londrina, 86057-970, Londrina, PR, Brazil. .
Źródło:
Journal of cancer research and clinical oncology [J Cancer Res Clin Oncol] 2020 Aug; Vol. 146 (8), pp. 1971-1978. Date of Electronic Publication: 2020 May 23.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin ; New York : Springer-Verlag.
MeSH Terms:
Interleukin-10/*genetics
Uterine Cervical Neoplasms/*genetics
Adenocarcinoma/blood ; Adenocarcinoma/genetics ; Adenocarcinoma/immunology ; Adult ; Carcinoma, Squamous Cell/blood ; Carcinoma, Squamous Cell/genetics ; Carcinoma, Squamous Cell/immunology ; Case-Control Studies ; DNA/blood ; DNA/genetics ; Female ; Genotype ; Humans ; Interleukin-10/biosynthesis ; Interleukin-10/immunology ; Polymorphism, Single Nucleotide ; Promoter Regions, Genetic ; Uterine Cervical Neoplasms/blood ; Uterine Cervical Neoplasms/immunology
References:
Appleby P, Beral V, Berrington De González A et al (2006) Carcinoma of the cervix and tobacco smoking: collaborative reanalysis of individual data on 13,541 women with carcinoma of the cervix and 23,017 women without carcinoma of the cervix from 23 epidemiological studies. Int J Cancer 118:1481–1495. https://doi.org/10.1002/ijc.21493. (PMID: 10.1002/ijc.2149316206285)
Bai CY, Shi XY, He J et al (2016) Association between IL-10 genetic variations and cervical cancer susceptibility in a Chinese population. Genet Mol Res 15:2–7. https://doi.org/10.4238/gmr.15038116. (PMID: 10.4238/gmr.15038116)
Barbisan G, Pérez LO, Contreras A, Golijow CD (2012) TNF-α and IL-10 promoter polymorphisms, HPV infection, and cervical cancer risk. Tumor Biol 33:1549–1556. https://doi.org/10.1007/s13277-012-0408-1. (PMID: 10.1007/s13277-012-0408-1)
Bauer HM, Ting Y, Greer CE et al (1991) Genital human papillomavirus infection in female university students as determined by a PCR-based method. JAMA 265:472–477. https://doi.org/10.1001/jama.1991.03460040048027. (PMID: 10.1001/jama.1991.034600400480271845912)
Bermudez-Morales VH, Gutierrez LX, Alcocer-Gonzalez JM, Burguete A, Madrid-Marina V (2008) Correlation between IL-10 gene expression and HPV infection in cervical cancer: a mechanism for immune response escape. Cancer Invest 26(10):1037–1043. https://doi.org/10.1080/07357900802112693. (PMID: 10.1080/0735790080211269318798072)
Berti FCB, Pereira APL, Trugilo KP et al (2017) IL-10 gene polymorphism c.-592C%3eA increases HPV infection susceptibility and influences IL-10 levels in HPV infected women. Infect Genet Evol 53:128–134. https://doi.org/10.1016/j.meegid.2017.05.020. (PMID: 10.1016/j.meegid.2017.05.02028552689)
Bhairavabhotla RK, Verm V, Tongaonkar H et al (2007) Role of IL-10 in immune suppression in cervical cancer. Indian J Biochem Biophys 44:350–356. (PMID: 18341210)
Capasso M, Avvisati RA, Piscopo C et al (2007) Cytokine gene polymorphisms in Italian preterm infants: association between interleukin-10–1082 G/A polymorphism and respiratory distress syndrome. Pediatr Res 61:313–317. https://doi.org/10.1203/pdr.0b013e318030d108. (PMID: 10.1203/pdr.0b013e318030d10817314689)
Chagas BS, Gurgel APAD, da Cruz HLA et al (2013) An interleukin-10 gene polymorphism associated with the development of cervical lesions in women infected with Human Papillomavirus and using oral contraceptives. Infect Genet Evol 19:32–37. https://doi.org/10.1016/j.meegid.2013.06.016. (PMID: 10.1016/j.meegid.2013.06.01623800422)
Cope A, Le Friec G, Cardone J, Kemper C (2011) The Th1 life cycle: molecular control of IFN-γ to IL-10 switching. Trends Immunol 32:278–286. https://doi.org/10.1016/j.it.2011.03.010. (PMID: 10.1016/j.it.2011.03.01021531623)
da Silva MC, Martins HPR, de Souza JL et al (2012) Prevalence of HPV infection and genotypes in women with normal cervical cytology in the state of Paraná, Brazil. Arch Gynecol Obstet 286:1015–1022. https://doi.org/10.1007/s00404-012-2399-y. (PMID: 10.1007/s00404-012-2399-y22699514)
Du GH, Wang JK, Richards JR, Wang JJ (2019) Genetic polymorphisms in tumor necrosis factor alpha and interleukin-10 are associated with an increased risk of cervical cancer. Int Immunopharmacol 66:154–161. https://doi.org/10.1016/j.intimp.2018.11.015. (PMID: 10.1016/j.intimp.2018.11.01530453149)
Eldridge RC, Pawlita M, Wilson L et al (2017) Smoking and subsequent human papillomavirus infection: a mediation analysis. Ann Epidemiol 27:724–730.e1. https://doi.org/10.1016/j.annepidem.2017.10.004. (PMID: 10.1016/j.annepidem.2017.10.004291074475705255)
Guan P, Howell-Jones R, Li N et al (2012) Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer. Int J Cancer 131:2349–2359. https://doi.org/10.1002/ijc.27485. (PMID: 10.1002/ijc.2748522323075)
Hobbs K, Negri J, Klinnert M et al (1998) Interleukin-10 and transforming growth factor-β promoter polymorphisms in allergies and asthma. Am J Respir Crit Care Med 158:1958–1962. https://doi.org/10.1164/ajrccm.158.6.9804011. (PMID: 10.1164/ajrccm.158.6.98040119847292)
INCA - Instituto Nacional de Câncer José Alencar Gomes da Silva (2016) Diretrizes Brasileiras para o Rastreamento de Câncer de Colo de Útero. Ministério da Saúde, 2nd edn. Rio de Janeiro, RJ.
Insinga RP, Perez G, Wheeler CM et al (2011) Incident cervical HPV infections in young women: transition probabilities for CIN and infection clearance. Cancer Epidemiol Biomark Prev 20:287–296. https://doi.org/10.1158/1055-9965.EPI-10-0791. (PMID: 10.1158/1055-9965.EPI-10-0791)
Ivansson EL, Gustavsson IM, Magnusson JJ et al (2007) Variants of chemokine receptor 2 and interleukin 4 receptor, but not interleukin 10 or Fas ligand, increase risk of cervical cancer. Int J Cancer 121:2451–2457. https://doi.org/10.1002/ijc.22989. (PMID: 10.1002/ijc.2298917688234)
Kessler TA (2017) Cervical cancer: prevention and early detection. Semin Oncol Nurs 33:172–183. https://doi.org/10.1016/j.soncn.2017.02.005. (PMID: 10.1016/j.soncn.2017.02.00528343836)
Kubo M, Motomura Y (2012) Transcriptional regulation of the anti-inflammatory cytokine IL-10 in acquired immune cells. Front Immunol 3:1–9. https://doi.org/10.3389/fimmu.2012.00275. (PMID: 10.3389/fimmu.2012.00275)
Lees BF, Erickson BK, Huh WK (2016) Cervical cancer screening: evidence behind the guidelines. Am J Obstet Gynecol 214:438–443. https://doi.org/10.1016/j.ajog.2015.10.147. (PMID: 10.1016/j.ajog.2015.10.14726519782)
Mannino MH, Zhu Z, Xiao H et al (2015) The paradoxical role of IL-10 in immunity and cancer. Cancer Lett 367:103–107. https://doi.org/10.1016/j.canlet.2015.07.009. (PMID: 10.1016/j.canlet.2015.07.00926188281)
Mesri EA, Feitelson MA, Munger K (2014) Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe 15:266–282. https://doi.org/10.1016/j.chom.2014.02.011. (PMID: 10.1016/j.chom.2014.02.011246293343992243)
Min Z, Pu X, Gu Z (2018) Correlative analysis of the expression of IL-10 and Ki-67 in human cervical cancer and cervical intraepithelial neoplasias and human papillomavirus infection. Oncol Lett 16:7189–7194. https://doi.org/10.3892/ol.2018.9520. (PMID: 10.3892/ol.2018.9520305464566256322)
Muñoz JP, Carrillo-Beltrán D, Aedo-Aguilera V et al (2018) Tobacco exposure enhances human papillomavirus 16 oncogene expression via EGFR/PI3K/Akt/c-Jun signaling pathway in cervical cancer cells. Front Microbiol 9:1–12. https://doi.org/10.3389/fmicb.2018.03022. (PMID: 10.3389/fmicb.2018.03022)
Pestka S, Krause CD, Sarkar D et al (2004) Interleukine-10 and related cytokines and receptors. Annu Rev Immunol 22:929–979. https://doi.org/10.1146/annurev.immunol.22.012703.104622. (PMID: 10.1146/annurev.immunol.22.012703.10462215032600)
Reeves G, Sweetland S, Kjaer S et al (2006) Cervical carcinoma and reproductive factors: collaborative reanalysis of individual data on 16,563 women with cervical carcinoma and 33,542 women without cervical carcinoma from 25 epidemiological studies. Int J Cancer 119:1108–1124. https://doi.org/10.1002/ijc.21953. (PMID: 10.1002/ijc.21953)
Rodriguez AC, Schiffman M, Herrero R et al (2008) Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections. JNCI J Natl Cancer Inst 100:513–517. https://doi.org/10.1093/jnci/djn044. (PMID: 10.1093/jnci/djn04418364507)
Roh JW, Kim MH, Seo SS et al (2002) Interleukin-10 promoter polymorphisms and cervical cancer risk in Korean women. Cancer Lett 184:57–63. https://doi.org/10.1016/S0304-3835(02)00193-3. (PMID: 10.1016/S0304-3835(02)00193-312104048)
Samir R, Asplund A, Tot T et al (2010) Tissue tumor marker expression in smokers, including serum cotinine concentrations, in women with cervical intraepithelial neoplasia or normal squamous cervical epithelium. Am J Obstet Gynecol 202:579.e1–579.e7. https://doi.org/10.1016/j.ajog.2009.11.034. (PMID: 10.1016/j.ajog.2009.11.034)
Sasagawa T, Takagi H, Makinoda S (2012) Immune responses against human papillomavirus (HPV) infection and evasion of host defense in cervical cancer. J Infect Chemother 18:807–815. (PMID: 10.1007/s10156-012-0485-5)
Schiffman M, Castle PEC, Jeronimo J et al (2007) Human papillomavirus and cervical cancer. Lancet 56370:890–970. https://doi.org/10.2222/jsv.56.219. (PMID: 10.2222/jsv.56.219)
Simen-Kapeu A, Kataja V, Yliskoski M et al (2008) Smoking impairs human papillomavirus (HPV) type 16 and 18 capsids antibody response following natural HPV infection. Scand J Infect Dis 40:745–751. https://doi.org/10.1080/00365540801995360. (PMID: 10.1080/0036554080199536019086247)
Singhal P, Kumar A, Bharadwaj S et al (2015) Association of IL-10 GTC haplotype with serum level and HPV infection in the development of cervical carcinoma. Tumor Biol 36:2287–2298. https://doi.org/10.1007/s13277-014-2836-6. (PMID: 10.1007/s13277-014-2836-6)
Steinke JW, Barekzi E, Hagman J, Borish L (2004) Functional analysis of −571 IL-10 promoter polymorphism reveals a repressor element controlled by Sp1. J Immunol 173:3215–3222. https://doi.org/10.4049/jimmunol.173.5.3215. (PMID: 10.4049/jimmunol.173.5.321515322183)
Steinke JW, Barekzi E, Hagman J, Borish L (2014) Functional analysis of −571 IL-10 promoter polymorphism reveals a repressor element controlled by Sp1. J Immunol 173:3215–3222. https://doi.org/10.4049/jimmunol.173.5.3215. (PMID: 10.4049/jimmunol.173.5.3215)
Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262. (PMID: 10.3322/caac.2126225651787)
Torres-Poveda K, Burguete-Garcia AI, Cruz M et al (2012) The SNP at -592 of human IL-10 gene is associated with serum IL-10 levels and increased risk for human papillomavirus cervical lesion development. Infect Agent Cancer 7:32. https://doi.org/10.1186/1750-9378-7-32. (PMID: 10.1186/1750-9378-7-32231486673552694)
Torres-Poveda K, Bahena-Román M, Madrid-González C et al (2014) Role of IL-10 and TGF-β1 in local immunosuppression in HPV-associated cervical neoplasia. World J Clin Oncol 5:753–763. https://doi.org/10.5306/wjco.v5.i4.753. (PMID: 10.5306/wjco.v5.i4.753253021754129538)
Turner DM, Williams DM, Sankaran D et al (1997) An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 24:1–8. https://doi.org/10.1111/j.1365-2370.1997.tb00001.x. (PMID: 10.1111/j.1365-2370.1997.tb00001.x9043871)
Wheeler CM, Hunt WC, Joste NE et al (2009) Human Papillomavirus genotype distributions: implications for vaccination and cancer screening in the United States. JNCI J Natl Cancer Inst 101:475–487. https://doi.org/10.1093/jnci/djn510. (PMID: 10.1093/jnci/djn51019318628)
WHO - World Health Organization (2016) UN Joint Global Programme on Cervical Cancer Prevention and Control.
Zaid A, Hodny Z, Li R, Nelson BD (2001) Sp1 acts as a repressor of the human adenine nucleotide translocase-2 (ANT2) promoter. Eur J Biochem 268:5497–5503. https://doi.org/10.1046/j.1432-1033.2001.02453.x. (PMID: 10.1046/j.1432-1033.2001.02453.x11683873)
Zidi S, Gazouani E, Stayoussef M et al (2015) IL-10 gene promoter and intron polymorphisms as genetic biomarkers of cervical cancer susceptibility among Tunisians. Cytokine 76:343–347. https://doi.org/10.1016/j.cyto.2015.05.028. (PMID: 10.1016/j.cyto.2015.05.02826076679)
Zoodsma M, Nolte IM, Schipper M et al (2005) Interleukin-10 and Fas polymorphisms and susceptibility for (pre)neoplastic cervical disease. Int J Gynecol Cancer 15:282–290. https://doi.org/10.1111/j.1525-1438.2005.00433.x. (PMID: 10.1111/j.1525-1438.2005.00433.x16343245)
zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350. https://doi.org/10.1038/nrc798. (PMID: 10.1038/nrc79812044010)
Grant Information:
470137/2013-4 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 34935.406.36850.19112012 Fundação Araucária
Contributed Indexing:
Keywords: Cancer; Cytokine; Human papillomavirus; Interleukin-10
Substance Nomenclature:
0 (IL10 protein, human)
130068-27-8 (Interleukin-10)
9007-49-2 (DNA)
Entry Date(s):
Date Created: 20200525 Date Completed: 20200713 Latest Revision: 20210813
Update Code:
20240105
DOI:
10.1007/s00432-020-03256-0
PMID:
32447484
Czasopismo naukowe
Purpose: Interleukin-10 (IL-10) is an immunoregulatory cytokine and its cervical and serum concentrations have been associated with a poor prognosis of cervical cancer. The rs1800872 polymorphism (c.-592C>A) in the promotor region of the IL-10 gene affects the production and expression of IL-10 and thus is able to determine the immune response profile in the cervix. Therefore, the aim of this work is to state the association between IL-10 c.-592C>A polymorphism and cervical cancer.
Methods: Genomic DNA was extracted from patient's peripheral blood and tumor biopsy. Socio-demographic, sexual behavior and reproductive characteristics data were collected using a questionnaire.
Results: Co-dominant model in logistic binary regression adjusted for confounders, showed that patients presenting with C/A genotype had 2.15 times more chances for developing cervical cancer (OR 2.15; CI 95% 1.02-4.56). The dominant model, C/A + A/A, was also independently associated with 2.71 times more chances for cervical cancer development when compared to control patients (OR 2.71; CI 95% 1.05-4.47).
Conclusion: Our study analyses show the association between cervical cancer and IL-10 c.-592C>A polymorphism, demonstrating that the allele A presence was independently associated with higher risks of cervical cancer development.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies