Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites.

Tytuł:
Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites.
Autorzy:
Perlinska AP; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland.; Centre of New Technologies, University of Warsaw, Warsaw, Poland.
Stasiulewicz A; Centre of New Technologies, University of Warsaw, Warsaw, Poland.; Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland.
Nawrocka EK; Centre of New Technologies, University of Warsaw, Warsaw, Poland.; Faculty of Chemistry, University of Warsaw, Warsaw, Poland.
Kazimierczuk K; Centre of New Technologies, University of Warsaw, Warsaw, Poland.
Setny P; Centre of New Technologies, University of Warsaw, Warsaw, Poland.
Sulkowska JI; Centre of New Technologies, University of Warsaw, Warsaw, Poland.; Faculty of Chemistry, University of Warsaw, Warsaw, Poland.
Źródło:
PLoS computational biology [PLoS Comput Biol] 2020 May 26; Vol. 16 (5), pp. e1007904. Date of Electronic Publication: 2020 May 26 (Print Publication: 2020).
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science, [2005]-
MeSH Terms:
Binding Sites*
Methionine Adenosyltransferase/*chemistry
S-Adenosylmethionine/*chemistry
Adenine/chemistry ; Amino Acid Motifs ; Computational Biology/methods ; Computer Simulation ; Databases, Protein ; Glycine/chemistry ; Magnetic Resonance Spectroscopy ; Molecular Dynamics Simulation ; Principal Component Analysis ; Protein Binding ; Protein Domains ; Protein Folding ; Solvents ; Temperature ; Water/chemistry ; tRNA Methyltransferases/chemistry
References:
PLoS Comput Biol. 2006 Sep 15;2(9):e122. (PMID: 16978047)
Bioinformatics. 2004 Dec 12;20(18):3702-4. (PMID: 15284097)
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W522-5. (PMID: 17488841)
Proteins. 2003 Apr 1;51(1):56-67. (PMID: 12596263)
Protein Sci. 2002 Sep;11(9):2125-37. (PMID: 12192068)
Mol Microbiol. 2005 Aug;57(4):1008-21. (PMID: 16091040)
Structure. 2000 Nov 15;8(11):1189-201. (PMID: 11080641)
Protein Sci. 2017 Dec;26(12):2381-2391. (PMID: 28940762)
J Comput Aided Mol Des. 2015 Oct;29(10):951-61. (PMID: 26276557)
Bioinformatics. 2012 Dec 1;28(23):3150-2. (PMID: 23060610)
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3119-24. (PMID: 19211785)
PLoS Biol. 2016 Mar 03;14(3):e1002396. (PMID: 26938925)
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7533-8. (PMID: 27339135)
PLoS Comput Biol. 2006 May;2(5):e45. (PMID: 16710448)
PLoS Comput Biol. 2010 Apr 01;6(4):e1000731. (PMID: 20369018)
Curr Opin Struct Biol. 2020 Feb;60:131-141. (PMID: 32062143)
Mol Biol Evol. 2013 Apr;30(4):772-80. (PMID: 23329690)
J Mol Biol. 2019 Feb 15;431(4):857-863. (PMID: 30639189)
BMC Struct Biol. 2005 Oct 14;5:19. (PMID: 16225687)
Trends Biochem Sci. 2003 Jun;28(6):329-35. (PMID: 12826405)
Biochemistry. 2010 Aug 3;49(30):6440-50. (PMID: 20550164)
Biophys J. 2016 Dec 20;111(12):2587-2599. (PMID: 28002735)
Sci Rep. 2016 Aug 16;6:31514. (PMID: 27527519)
Curr Opin Struct Biol. 2002 Dec;12(6):783-93. (PMID: 12504684)
Protein Sci. 2015 Apr;24(4):508-24. (PMID: 25420575)
Annu Rev Biochem. 1975;44:435-51. (PMID: 1094914)
Arch Biochem Biophys. 2014 Mar 15;546:64-71. (PMID: 24486374)
Phys Rev Lett. 2015 Jan 16;114(2):028102. (PMID: 25635563)
Phys Chem Chem Phys. 2018 Mar 14;20(11):7523-7531. (PMID: 29488986)
Biochemistry. 2019 Jan 22;58(3):166-170. (PMID: 30406995)
Protein Sci. 1993 Jan;2(1):31-40. (PMID: 8382990)
J Biomol NMR. 1995 Nov;6(3):277-93. (PMID: 8520220)
Nat Chem Biol. 2011 Dec 18;8(2):147-53. (PMID: 22179065)
BMC Bioinformatics. 2007 Mar 05;8:73. (PMID: 17338813)
ACS Infect Dis. 2019 Mar 8;5(3):326-335. (PMID: 30682246)
Genome Res. 2004 Jun;14(6):1188-90. (PMID: 15173120)
Biochemistry. 2002 Jun 18;41(24):7636-46. (PMID: 12056895)
J Med Chem. 2013 Sep 26;56(18):7278-88. (PMID: 23981144)
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):E4197-205. (PMID: 26183229)
Nucleic Acids Res. 2016 Dec 15;44(22):10834-10848. (PMID: 27683218)
J Phys Chem B. 2018 Dec 13;122(49):11616-11625. (PMID: 30198720)
Bioinformatics. 2009 May 1;25(9):1189-91. (PMID: 19151095)
Nucleic Acids Res. 2011 Mar;39(6):2445-57. (PMID: 21087996)
Polymers (Basel). 2017 Sep 16;9(9):. (PMID: 30965758)
EMBO J. 2003 Jun 2;22(11):2593-603. (PMID: 12773376)
J Phys Condens Matter. 2015 Sep 9;27(35):354105. (PMID: 26292194)
Curr Opin Struct Biol. 2017 Feb;42:6-14. (PMID: 27794211)
Science. 2007 Aug 17;317(5840):961-4. (PMID: 17702946)
Proteins. 2006 Nov 15;65(3):712-25. (PMID: 16981200)
Nucleic Acids Res. 2003 Sep 15;31(18):5440-8. (PMID: 12954781)
Proteins. 2006 Aug 15;64(3):559-74. (PMID: 16736488)
Essays Biochem. 2017 Mar 3;61(1):103-114. (PMID: 28258234)
P T. 2015 Apr;40(4):277-83. (PMID: 25859123)
J Mol Biol. 2010 Jul 9;400(2):204-17. (PMID: 20452364)
Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20732-7. (PMID: 21068371)
Nucleic Acids Res. 2019 Jan 8;47(D1):D367-D375. (PMID: 30508159)
J Biol Chem. 2009 Jun 19;284(25):17013-20. (PMID: 19369248)
Nucleic Acids Res. 2008 Apr;36(7):2295-300. (PMID: 18287115)
Nature. 1994 Mar 24;368(6469):354-8. (PMID: 8127373)
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1715-23. (PMID: 22685208)
Nat Struct Mol Biol. 2016 Oct;23(10):941-948. (PMID: 27571175)
Molecular Sequence:
figshare 10.6084/m9.figshare.9944423
Substance Nomenclature:
0 (Solvents)
059QF0KO0R (Water)
7LP2MPO46S (S-Adenosylmethionine)
EC 2.1.1.- (tRNA Methyltransferases)
EC 2.5.1.6 (Methionine Adenosyltransferase)
JAC85A2161 (Adenine)
TE7660XO1C (Glycine)
Entry Date(s):
Date Created: 20200527 Date Completed: 20200807 Latest Revision: 20200807
Update Code:
20240105
PubMed Central ID:
PMC7319350
DOI:
10.1371/journal.pcbi.1007904
PMID:
32453784
Czasopismo naukowe
S-adenosylmethionine (SAM) is one of the most important enzyme substrates. It is vital for the function of various proteins, including large group of methyltransferases (MTs). Intriguingly, some bacterial and eukaryotic MTs, while catalysing the same reaction, possess significantly different topologies, with the former being a knotted one. Here, we conducted a comprehensive analysis of SAM conformational space and factors that affect its vastness. We investigated SAM in two forms: free in water (via NMR studies and explicit solvent simulations) and bound to proteins (based on all data available in the PDB and on all-atom molecular dynamics simulations in water). We identified structural descriptors-angles which show the major differences in SAM conformation between unknotted and knotted methyltransferases. Moreover, we report that this is caused mainly by a characteristic for knotted MTs compact binding site formed by the knot and the presence of adenine-binding loop. Additionally, we elucidate conformational restrictions imposed on SAM molecules by other protein groups in comparison to conformational space in water.
Competing Interests: The authors have declared that no competing interests exist.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies