Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Influence of de-remineralization process on chemical, microstructural, and mechanical properties of human and bovine dentin.

Tytuł:
Influence of de-remineralization process on chemical, microstructural, and mechanical properties of human and bovine dentin.
Autorzy:
Enrich-Essvein T; Department of Operative Dentistry, School of Dentistry, University of Granada, Campus de Cartuja, Colegio Maximo s/n, 18071, Granada, Spain. .
Benavides-Reyes C; Department of Operative Dentistry, School of Dentistry, University of Granada, Campus de Cartuja, Colegio Maximo s/n, 18071, Granada, Spain.
Álvarez-Lloret P; Department of Geology, Faculty of Geology, University of Oviedo, Jesús Arias de Velasco s/n, 33005, Oviedo, Spain.
Bolaños-Carmona MV; Department of Pediatric Dentistry, School of Dentistry, University of Granada, Campus de Cartuja, Colegio Maximo s/n, 18071, Granada, Spain.
Rodríguez-Navarro AB; Department of Mineralogy and Petrology, Faculty of Sciences, University of Granada, Avenida de Fuentenueva s/n, 18002, Granada, Spain.
González-López S; Department of Operative Dentistry, School of Dentistry, University of Granada, Campus de Cartuja, Colegio Maximo s/n, 18071, Granada, Spain.
Źródło:
Clinical oral investigations [Clin Oral Investig] 2021 Mar; Vol. 25 (3), pp. 841-849. Date of Electronic Publication: 2020 May 27.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Berlin : Springer-Verlag
Original Publication: Berlin : Springer, c1997-
MeSH Terms:
Dentin*
Incisor*
Animals ; Cattle ; Humans ; Minerals
References:
Yassen GH, Platt JA, Hara AT (2011) Bovine teeth as substitute for human teeth in dental research: a review of literature. J Oral Sci 53:273–282. https://doi.org/10.2334/josnusd.53.273. (PMID: 10.2334/josnusd.53.27321959653)
Soares FZM, Follak A, da Rosa LS, Montagner AF, Lenzi TL, Rocha RO (2016) Bovine tooth is a substitute for human tooth on bond strength studies: a systematic review and meta-analysis of in vitro studies. Dent Mater 32:1385–1393. https://doi.org/10.1016/j.dental.2016.09.019. (PMID: 10.1016/j.dental.2016.09.01927692438)
Nakamichi I, Iwaku M, Fusayama T (1983) Bovine teeth as possible substitutes in the adhesion test. J Dent Res 62:1076–1081. https://doi.org/10.1177/00220345830620101501. (PMID: 10.1177/002203458306201015016352757)
Wegehaupt FJ, Widmer R, Attin T (2010) Is bovine dentine an appropriate substitute in abrasion studies? Clin Oral Investig 14:201–205. https://doi.org/10.1007/s00784-009-0283-3. (PMID: 10.1007/s00784-009-0283-319452177)
Tanaka JLO, Medici Filho E, Salgado JAP, Salgado MAC, Moraes LC, Moraes MEL, Castilho JCM (2008) Comparative analysis of human and bovine teeth: radiographic density. Braz Oral Res 22:346–351. https://doi.org/10.1590/S1806-83242008000400011. (PMID: 10.1590/S1806-8324200800040001119148391)
Dutra-Correa M, Anauate-Netto C, Arana-Chavez VE (2007) Density and diameter of dentinal tubules in etched and non-etched bovine dentine examined by scanning electron microscopy. Arch Oral Biol 52:850–855. https://doi.org/10.1016/j.archoralbio.2007.03.003. (PMID: 10.1016/j.archoralbio.2007.03.00317433249)
Lopes MB, Sinhoreti MAC, Gonini Júnior A, Consani S, Mccabe JF (2009) Comparative study of tubular diameter and quantity for human and bovine dentin at different depths. Braz Dent J 20:279–283. https://doi.org/10.1590/S0103-64402009000400003. (PMID: 10.1590/S0103-6440200900040000320069249)
Fonseca RB, Haiter-Neto F, Fernandes-Neto AJ, Barbosa GAS, Soares CJ (2004) Radiodensity of enamel and dentin of human, bovine and swine teeth. Arch Oral Biol 49:919–922. https://doi.org/10.1016/j.archoralbio.2004.05.006. (PMID: 10.1016/j.archoralbio.2004.05.00615353248)
Marquezan M, Corrêa FNP, Sanabe ME, Rodrigues Filho LE, Hebling J, Guedes-Pinto AC, Mendes FM (2009) Artificial methods of dentine caries induction: a hardness and morphological comparative study. Arch Oral Biol 54:1111–1117. https://doi.org/10.1016/j.archoralbio.2009.09.007. (PMID: 10.1016/j.archoralbio.2009.09.00719878926)
White DJ (1995) The application of in vitro models to research on demineralization and remineralization of the teeth. Adv Dent Res 9:175–193. (PMID: 10.1177/08959374950090030101)
Pacheco LF, Banzi ÉC d F, Rodrigues E et al (2013) Molecular and structural evaluation of dentin caries-like lesions produced by different artificial models. Braz Dent J 24:610–618. https://doi.org/10.1590/0103-6440201302357. (PMID: 10.1590/0103-644020130235724474358)
Boskey AL, Mendelsohn R (2005) Infrared spectroscopic characterization of mineralized tissues. Vib Spectrosc 38:107–114. https://doi.org/10.1016/j.vibspec.2005.02.015. (PMID: 10.1016/j.vibspec.2005.02.015166912881459415)
Lopes C d CA, Limirio PHJO, Novais VR, Dechichi P (2018) Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl Spectrosc Rev 53:747–769. https://doi.org/10.1080/05704928.2018.1431923. (PMID: 10.1080/05704928.2018.1431923)
Rodriguez-Navarro A, Romanek C, Alvarez-LLoret P, Gaines K (2006) Effect of in ovo exposure to PCBs and Hg on clapper rail bone mineral chemistry from a contaminated salt marsh in coastal Georgia. Environ Sci Technol 40:4936–4942. https://doi.org/10.1021/es060769x. (PMID: 10.1021/es060769x16955889)
Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, Boskey AL (2001) In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the ν4 PO43− vibration. Biochim Biophys Acta, Gen Subj 1527:11–19. https://doi.org/10.1016/S0304-4165(01)00093-9. (PMID: 10.1016/S0304-4165(01)00093-9)
Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16:1821–1828. https://doi.org/10.1359/jbmr.2001.16.10.1821. (PMID: 10.1359/jbmr.2001.16.10.182111585346)
Holager J (1970) Thermogravimetric examination of enamel and dentin. J Dent Res 49:546–548. (PMID: 10.1177/00220345700490031301)
Lim JJ, Liboff AR (1972) Thermogravimetric analysis of dentin. J Dent Res 51:509–514. https://doi.org/10.1177/00220345720510024401. (PMID: 10.1177/002203457205100244014501286)
Elfersi S, Grégoire G, Sharrock P (2002) Characterization of sound human dentin particles of sub-millimeter size. Dent Mater 18:529–534. https://doi.org/10.1586/ecp.10.28. (PMID: 10.1586/ecp.10.2812191666)
Reyes-Gasga J, Martínez-Piñeiro EL, Rodríguez-Álvarez G, Tiznado-Orozco GE, García-García R, Brès EF (2013) XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite. Mater Sci Eng C 33:4568–4574. https://doi.org/10.1016/j.msec.2013.07.014. (PMID: 10.1016/j.msec.2013.07.014)
Gadaleta SJ, Paschalis EP, Betts F, Mendelsohn R, Boskey AL (1996) Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data. Calcif Tissue Int 58:9–16. https://doi.org/10.1007/BF02509540. (PMID: 10.1007/BF025095408825233)
Hara AT, Queiroz CS, Paes Leme AF, Serra MC, Cury JA (2003) Caries progression and inhibition in human and bovine root dentine in situ. Caries Res 37:339–344. https://doi.org/10.1159/000072165. (PMID: 10.1159/00007216512925824)
De Dios TJ, Alcolea A, Hernández A, Ruiz AJO (2015) Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Arch Oral Biol 60:768–775. https://doi.org/10.1016/j.archoralbio.2015.01.014. (PMID: 10.1016/j.archoralbio.2015.01.014)
Silva Soares LE, Do Espírito Santo AM (2015) Morphological and chemical comparative analysis of the human and bovine dentin-adhesive layer. Microsc Microanal 21:204–213. https://doi.org/10.1017/S143192761401366X. (PMID: 10.1017/S143192761401366X)
Falla-Sotelo FO, Rizzutto MA, Tabacniks MH, Added N, Barbosa MDL, Markarian RA, Quinelato A, Mori M, Youssef M (2005) Analysis and discussion of trace elements in teeth of different animal species. Braz J Phys 35:761–762. https://doi.org/10.1590/S0103-97332005000500010. (PMID: 10.1590/S0103-97332005000500010)
Soares LES, Campos ADF, Martin AA (2013) Human and bovine dentin composition and its hybridization mechanism assessed by FT-Raman spectroscopy. J Spectrosc 2013:1–7. https://doi.org/10.1155/2013/210671. (PMID: 10.1155/2013/210671)
Dawes C (2003) What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc 69:722–725. (PMID: 14653937)
Ito A, Maekawa K, Tsutsumi S, Ikazaki F, Tateishi T (1997) Solubility product of OH-carbonated hydroxyapatite. J Biomed Mater Res 36:522–528. https://doi.org/10.1002/(SICI)1097-4636(19970915)36:4<522::AID-JBM10>3.0.CO;2-C. (PMID: 10.1002/(SICI)1097-4636(19970915)36:4<522::AID-JBM10>3.0.CO;2-C9294768)
Ortiz-Ruiz AJ, Teruel-Fernández J d D, Alcolea-Rubio LA et al (2018) Structural differences in enamel and dentin in human, bovine, porcine, and ovine teeth. Ann Anat 218:7–17. https://doi.org/10.1016/j.aanat.2017.12.012. (PMID: 10.1016/j.aanat.2017.12.01229604387)
Barralet JE, Best S, Bonfield W (1998) Carbonate substitution in precipitated hydroxyapaptite: an investigation into the effects of reaction temperature and bicarbonae ion concentration. J Biomed Mater Res 41:79–86. (PMID: 10.1002/(SICI)1097-4636(199807)41:1<79::AID-JBM10>3.0.CO;2-C)
Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone mineral: a resolution-enhanced fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164. https://doi.org/10.1007/BF02556059. (PMID: 10.1007/BF025560592505907)
Donnelly E, Boskey AL, Baker SP, van der Meulen MCH (2010) Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A 92:1048–1056. https://doi.org/10.1002/jbm.a.32442. (PMID: 10.1002/jbm.a.3244241601434160143)
Kinney J, Balooch M, Haupt D et al (1995) Mineral distribuition and dimensional changes in human dentin during demineralization. J Dent Res 74:1179–1184. (PMID: 10.1177/00220345950740050601)
Almahdy A, Downey FC, Sauro S, Cook RJ, Sherriff M, Richards D, Watson TF, Banerjee A, Festy F (2012) Microbiochemical analysis of carious dentine using raman and fluorescence spectroscopy. Caries Res 46:432–440. https://doi.org/10.1159/000339487. (PMID: 10.1159/00033948722739587)
Cazalbou S, Combes C, Eichert D et al (2004) Poorly crystalline apatites: evolution and maturation in vitro and in vivo. J Bone Miner Metab 22:310–317. https://doi.org/10.1007/s00774-004-0488-0. (PMID: 10.1007/s00774-004-0488-015221488)
Dominguez-Gasca N, Benavides-Reyes C, Sánchez-Rodríguez E, Rodríguez-Navarro AB (2019) Changes in avian cortical and medullary bone mineral composition and organization during acid-induced demineralization. Eur J Mineral 31:209–216. https://doi.org/10.1127/ejm/2019/0031-2826. (PMID: 10.1127/ejm/2019/0031-2826)
Ryou H, Amin N, Ross A, Eidelman N, Wang DH, Romberg E, Arola D (2011) Contributions of microstructure and chemical composition to the mechanical properties of dentin. J Mater Sci Mater Med 22:1127–1135. https://doi.org/10.1007/s10856-011-4293-8. (PMID: 10.1007/s10856-011-4293-8214556773118654)
Schilke R, Lisson JA, Bauß O, Geurtsen W (2000) Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch Oral Biol 45:355–361. https://doi.org/10.1016/S0003-9969(00)00006-6. (PMID: 10.1016/S0003-9969(00)00006-610739856)
Camargo CHR, Siviero M, Camargo SEA, de Oliveira SHG, Carvalho CAT, Valera MC (2007) Topographical, diametral, and quantitative analysis of dentin tubules in the root canals of human and bovine teeth. J Endod 33:422–426. https://doi.org/10.1016/J.JOEN.2006.12.011. (PMID: 10.1016/J.JOEN.2006.12.01117368331)
Ferreira M, De Carvalho F, Neiva C (2018) Viability of bovine teeth as a substrate in bond strength tests : a systematic review and meta-analysis. J Adhes Dent 20:471–480. https://doi.org/10.3290/j.jad.a41636. (PMID: 10.3290/j.jad.a41636)
Grant Information:
CGL2015-64683-P Research Projects of the Spanish Government
Contributed Indexing:
Keywords: Biomechanics; Bovine dentin; Chemical composition; Demineralization; Human dentin; Remineralization
Substance Nomenclature:
0 (Minerals)
Entry Date(s):
Date Created: 20200529 Date Completed: 20210215 Latest Revision: 20210215
Update Code:
20240105
DOI:
10.1007/s00784-020-03371-9
PMID:
32462276
Czasopismo naukowe
Objectives: This study compared the chemical composition, microstructural, and mechanical properties of human and bovine dentin subjected to a demineralization/remineralization process.
Materials and Methods: Human and bovine incisors were sectioned to obtain 120 coronal dentin beams (6 × 1 × 1 mm 3 ) that were randomly allocated into 4 subgroups (n = 15) according to the time of treatment (sound, pH-cycling for 3, 7, and 14 days). Three-point bending mechanical test, attenuated total reflectance-Fourier transform infrared (ATR-FTIR), thermogravimetric (TG), and X-ray diffraction (XRD) techniques were employed to characterize the dentin samples.
Results: Regarding chemical composition at the molecular level, bovine sound dentin showed significantly lower values in organic and inorganic content (collagen cross-linking, CO 3 /amide I, and CO 3 /PO 4 ; p = 0.002, p = 0.026, and p = 0.002, respectively) compared to humans. Employing XRD analyses, a higher mineral crystallinity in human dentin than in bovines at 7 and 14 days (p = 0.003 and p = 0.009, respectively) was observed. At the end of the pH-cycling, CI (ATR-FTIR) and CO 3 /PO 4 ratios (ATR-FTIR) increased, while CO 3 /amide I (ATR-FTIR), PO 4 /amide I (ATR-FTIR), and %mineral (TG) ratios decreased. The extension by compression values increased over exposure time with significant differences between dentin types (p < 0.001, in all cases), reaching higher values in bovine dentin. However, flexural strength (MPa) did not show differences between groups. We also observed the correlation between compositional variables (i.e., PO 4 /amide I, CI, and %mineral) and the extension by compression.
Conclusions: Human and bovine dentin are different in terms of microstructure, chemical composition, mechanical strength, and in their response to the demineralization/remineralization process by pH-cycling.
Clinical Relevance: These dissimilarities may constitute a potential limitation when replacing human teeth with bovines in in vitro studies.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies