Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Reduced pulmonary vascular reserve during stress echocardiography in confirmed pulmonary hypertension and patients at risk of overt pulmonary hypertension.

Tytuł:
Reduced pulmonary vascular reserve during stress echocardiography in confirmed pulmonary hypertension and patients at risk of overt pulmonary hypertension.
Autorzy:
Wierzbowska-Drabik K; I Department and Chair of Cardiology, Medical University of Lodz, Bieganski Hospital, Lodz, Poland. .
Kasprzak JD; I Department and Chair of Cardiology, Medical University of Lodz, Bieganski Hospital, Lodz, Poland.
D Alto M; Department of Cardiology, University 'L. Vanvitelli'- AORN dei Colli - Monaldi Hospital, Naples, Italy.
Ágoston G; Department of Family Medicine, University of Szeged, Tisza Lajos krt. 109, Szeged, 6725, Hungary.
Varga A; Department of Family Medicine, University of Szeged, Tisza Lajos krt. 109, Szeged, 6725, Hungary.
Ferrara F; Cardiology Division, Heart Department, University Hospital of Salerno, 'Cava de' Tirreni and Amalfi Coast' Hospital, Salerno, Italy.
Amor M; Cardiology Department, Ramos Mejia Hospital, Buenos Aires, Argentina.
Ciampi Q; Division of Cardiology, Fatebenefratelli Hospital, Benevento, Italy.
Bossone E; AORN A. Cardarelli Hospital, Naples, Italy.
Picano E; Institute of Clinical Physiology - C.N.R., Pisa, Italy.
Źródło:
The international journal of cardiovascular imaging [Int J Cardiovasc Imaging] 2020 Oct; Vol. 36 (10), pp. 1831-1843. Date of Electronic Publication: 2020 May 27.
Typ publikacji:
Comparative Study; Journal Article; Multicenter Study
Język:
English
Imprint Name(s):
Publication: [New York] : Springer
Original Publication: Boston : Kluwer Academic Publishers, c2001-
MeSH Terms:
Echocardiography, Doppler*
Echocardiography, Stress*
Exercise Test*
Hemodynamics*
Pulmonary Circulation*
Hypertension, Pulmonary/*diagnostic imaging
Pulmonary Artery/*diagnostic imaging
Adult ; Aged ; Aged, 80 and over ; Arterial Pressure ; Cardiac Output ; Case-Control Studies ; Europe ; Exercise Tolerance ; Feasibility Studies ; Female ; Humans ; Hypertension, Pulmonary/physiopathology ; Male ; Middle Aged ; Predictive Value of Tests ; Pulmonary Artery/physiopathology ; Time Factors ; Young Adult
References:
Rudski LG, Gargani L, Armstrong W, Lancellotti P, Lester S, Grunig E et al (2018) Stressing the cardiopulmonary vascular system: the role of echocardiography. J Am Soc Echocardiogr 31:527–550. (PMID: 10.1016/j.echo.2018.01.002)
Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, ESC Scientific Document Group et al (2016) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37:67–119. (PMID: 10.1093/eurheartj/ehv317)
Gruenig E, Weissman S, Ehlken N, Fijałkowska A, Fischer C, Fourme T et al (2009) Stress doppler echocardiography in relatives of patients with idiopathic and familial pulmonary arterial hypertension results of a multicenter European analysis of pulmonary artery pressure response to exercise and hypoxia. Circulation 119:1747–1757. (PMID: 10.1161/CIRCULATIONAHA.108.800938)
Codullo V, Caporali R, Cuomo G, Ghio S, D’Alto M, Fusetti C et al (2013) Stress Doppler echocardiography in systemic sclerosis: evidence for a role in the prediction of pulmonary hypertension. Arthritis Rheum 65:2403–2411. (PMID: 10.1002/art.38043)
Hachulla E, Gressin V, Guillevin L, Carpentier P, Diot E, Sibilia J et al (2005) Early detection of pulmonary arterial hypertension in systemic sclerosis: a French nationwide prospective multicentre study. Arthritis Rheum 52:3792–3800. (PMID: 10.1002/art.21433)
Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713. (PMID: 10.1016/j.echo.2010.05.010)
Bossone E, Rubefire M, Bach DS, Ricciardi M, Armstrong WF (1999) Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: implications for the diagnosis of pulmonary hypertension. J Am Coll Cardiol 33:1662–1666. (PMID: 10.1016/S0735-1097(99)00055-8)
Wang YC, Huang CH, Tu YK (2018) Pulmonary hypertension and pulmonary artery acceleration time: a systematic review and meta-analysis. J Am Soc Echocardiogr 31:201–210. (PMID: 10.1016/j.echo.2017.10.016)
Wierzbowska-Drabik K, Picano E, Bossone E, Ciampi Q, Lipiec P, Kasprzak JD (2019) The feasibility and clinical implication of tricuspid regurgitant velocity and pulmonary flow acceleration time evaluation for estimating pulmonary pressure assessment during exercise stress echocardiography. Eur Heart J Cardiovasc Imaging 20:1027–1034. (PMID: 10.1093/ehjci/jez029)
Lewis GD, Bossone E, Naeije R (2013) Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation 128:1470–1479. (PMID: 10.1161/CIRCULATIONAHA.112.000667)
Claessens G, La Gerche A, Voigt J-U, Dymarkowski S, Schnell F, Petit T et al (2016) Accuracy of echocardiography to evaluate pulmonary vascular and right ventricular function during exercise. JACC Imaging 9:532–543. (PMID: 10.1016/j.jcmg.2015.06.018)
Picano E, Ciampi Q, Citro R, D'Andrea A, Scali MC, Cortigiani L et al (2017) Stress echo 2020: the international stress echo study in ischemic and non-ischemic heart disease. Cardiovasc Ultrasound 15:3. (PMID: 10.1186/s12947-016-0092-1)
Ciampi Q, Zagatina A, Cortigiani L, Gaibazzi N, Borguezan Daros C, Zhuravskaya N et al (2019) Functional, anatomical, and prognostic correlates of coronary flow velocity reserve during stress echocardiography. J Am Coll Cardiol 74:2278–2291. (PMID: 10.1016/j.jacc.2019.08.1046)
Lancellotti P, Pellikka PA, Budts W, Chaudhry FA, Donal E, Dulgheru R et al (2016) The clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging 17:1191–1229. (PMID: 10.1093/ehjci/jew190)
Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–270. (PMID: 10.1093/ehjci/jev014)
Augustin DX, Coates-Bradshaw LD, Willis J, Harkness A, Ring L, Grapsa J et al (2018) Echocardiographic assessment of pulmonary hypertension: a guideline protocol from the British Society of Echocardiography. Echo Res Pract. https://doi.org/10.1530/ERP-17-0071. (PMID: 10.1530/ERP-17-0071)
Scali MC, Cortigiani L, Simionuc A, Gregori D, Marzilli M, Picano E (2017) Exercise-induced B-lines identify worse functional and prognostic stage in heart failure patients with depressed left ventricular ejection fraction. Eur J Heart Fail 19:1468–1478. (PMID: 10.1002/ejhf.776)
Amsallem M, Sternbach JM, Adigopula S, Kobayashi Y, Vu TA, Zamanian R et al (2016) Addressing the controversy of estimating pulmonary arterial pressure by echocardiography. J Am Soc Echocardiogr 29:93–102. (PMID: 10.1016/j.echo.2015.11.001)
Yared K, Noseworthy P, Weyman AE, McCabe E, Picard MH, Baggish AL (2011) Pulmonary artery acceleration time provides an accurate estimate of systolic pulmonary arterial pressure during transthoracic echocardiography. J Am Soc Echocardiogr 24:687–692. (PMID: 10.1016/j.echo.2011.03.008)
Ciampi Q, Picano E, Paterni M, Daros CB, Simova I, e Silva JL, on behalf of Stress Echo 2020 et al (2017) Quality control of regional wall motion analysis in Stress Echo 2020. Int J Cardiol 249:479–485. (PMID: 10.1016/j.ijcard.2017.09.172)
Magnin PA, Stewart JA, Myers S, von Ramm O, Kisslo JA (1981) Combined Doppler and phased-array echocardiographic estimation of cardiac output. Circulation 63:388–392. (PMID: 10.1161/01.CIR.63.2.388)
Ihlen H, Amlie JP, Dale J (1984) Determination of cardiac output by Doppler echocardiography. Br Heart J 51:54–56. (PMID: 10.1136/hrt.51.1.54)
Lewis JF, Kuo LC, Nelson JG, Limacher MC, Quinones MA (1984) Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation 70:425–431. (PMID: 10.1161/01.CIR.70.3.425)
Evangelista A, Garcia-Dorado D, Del Castillo H (1995) Cardiac index quantification by Doppler ultrasound in patients without left ventricular outflow tract abnormalities. J Am Coll Cardiol 25:710–716. (PMID: 10.1016/0735-1097(94)00456-Z)
Villavicencio C, Leache J, Marin J, Oliva I, Rodriguez A, Bodí M et al (2019) Basic critical care echocardiography training of intensivists allows reproducible and reliable measurements of cardiac output. Ultrasound J 11:5. https://doi.org/10.1186/s13089-019-0120-0. (PMID: 10.1186/s13089-019-0120-0313591886638616)
Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ (2003) A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol 41:1021–1027. (PMID: 10.1016/S0735-1097(02)02973-X)
Venkateshvaran A, Hamade J, Kjellström B, Lund LH, Manouras A (2019) Doppler estimates of pulmonary vascular resistance to phenotype pulmonary hypertension in heart failure. Int J Cardiovasc Imaging 35:1465–1472. (PMID: 10.1007/s10554-019-01591-z)
Kitabatake A, Inoue M, Asao M, Masuyama T, Tanouchi J, Morita T et al (1983) Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation 68:302–309. (PMID: 10.1161/01.CIR.68.2.302)
Roushdy AM, Ragab I, Abd el Raouf W (2012) Noninvasive assessment of elevated pulmonary vascular resistance in children with pulmonary hypertension secondary to congenital heart disease: a comparative study between five different Doppler indices. J Saudi Heart Assoc 24:233–241. (PMID: 10.1016/j.jsha.2012.05.004)
Hellenkamp K, Unsöld B, Mushemi-Blake S, Shah AM, Friede T, Hasenfuss G et al (2018) Echocardiographic estimation of mean pulmonary artery pressure: a comparison of different approaches to assign the likelihood of pulmonary hypertension. J Am Soc Echocardiogr 31:89–98. (PMID: 10.1016/j.echo.2017.09.009)
Marra AM, Naeije R, Ferrara F, Vriz O, Stanziola AA, D'Alto M et al (2018) Reference ranges and determinants of tricuspid regurgitation velocity in healthy adults assessed by two-dimensional Doppler-echocardiography. Respiration 96:425–433. (PMID: 10.1159/000490191)
Naeije R, Saggar R, Badesch D, Rajagopalan S, Gargani L, Rischard F et al (2018) Exercise-induced pulmonary hypertension: translating pathophysiological concepts into clinical practice. Chest 154:10–15. (PMID: 10.1016/j.chest.2018.01.022)
Lau EMT, Humbert M, Celermajer DS (2015) Early detection of pulmonary arterial hypertension. Nat Rev Cardiol 12:143–155. (PMID: 10.1038/nrcardio.2014.191)
Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E et al (2019) How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 40:3297–3317. (PMID: 10.1093/eurheartj/ehz641)
Grunig E, Mereles D, Hildebrandt W, Swenson ER, Kübler W, Kuecherer H, Bärtsch P (2000) Stress Doppler echocardiography for identification of susceptibility to high altitude pulmonary edema. J Am Coll Cardiol 35:980–987. (PMID: 10.1016/S0735-1097(99)00633-6)
Esfandiari S, Wolsk E, Granton D, Azevedo L, Valle FH, Gustafsson F, Mak S (2019) Pulmonary arterial wedge pressure at rest and during exercise in healthy adults: a systematic review and meta-analysis. J Card Fail 25:114–122. (PMID: 10.1016/j.cardfail.2018.10.009)
Contributed Indexing:
Keywords: Pulmonary acceleration time; Pulmonary hypertension; Pulmonary vascular reserve; Stress echocardiography; Tricuspid regurgitant velocity
Entry Date(s):
Date Created: 20200529 Date Completed: 20200928 Latest Revision: 20211222
Update Code:
20240105
PubMed Central ID:
PMC7497494
DOI:
10.1007/s10554-020-01897-3
PMID:
32462450
Czasopismo naukowe
Noninvasive estimation of systolic pulmonary artery pressure (SPAP) during exercise stress echocardiography (ESE) is recommended for pulmonary hemodynamics evaluation but remains flow-dependent. Our aim was to assess the feasibility of pulmonary vascular reserve index (PVRI) estimation during ESE combining SPAP with cardiac output (CO) or exercise-time and compare its value in three group of patients: with invasively confirmed pulmonary hypertension (PH), at risk of PH development (PH risk) mainly with systemic sclerosis and in controls (C) without clinical risk factors for PH, age-matched with PH risk patients. We performed semisupine ESE in 171 subjects: 31 PH, 61 PH at risk and 50 controls as well as in 29 young, healthy normals. Rest and stress assessment included: tricuspid regurgitant flow velocity (TRV), pulmonary acceleration time (ACT), CO (Doppler-estimated). SPAP was calculated from TRV or ACT when TRV was not available. We estimated PVRI based on CO (peak CO/SPAP*0.1) or exercise-time (ESE time/SPAP*0.1). During stress, TRV was measurable in 44% patients ACT in 77%, either one in 95%. PVRI was feasible in 65% subjects with CO and 95% with exercise-time (p < 0.0001). PVRI was lower in PH compared to controls both for CO-based PVRI (group 1 = 1.0 ± 0.95 vs group 3 = 4.28 ± 2.3, p < 0.0001) or time-based PVRI estimation (0.66 ± 0.39 vs 3.95 ± 2.26, p < 0.0001). The proposed criteria for PH detection were for CO-based PVRI ≤ 1.29 and ESE-time based PVRI ≤ 1.0 and for PH risk ≤ 1.9 and ≤ 1.7 respectively. Noninvasive estimation of PVRI can be obtained in near all patients during ESE, without contrast administration, integrating TRV with ACT for SPAP assessment and using exercise time as a proxy of CO. These indices allow for comparison of pulmonary vascular dynamics in patients with varied exercise tolerance and clinical status.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies