Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Ontogenetic scaling of phloem sieve tube anatomy and hydraulic resistance with tree height in Quercus rubra.

Tytuł :
Ontogenetic scaling of phloem sieve tube anatomy and hydraulic resistance with tree height in Quercus rubra.
Autorzy :
Clerx LE; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
Rockwell FE; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
Savage JA; Department of Biology, University of Minnesota, Duluth, MN, 55812, USA.
Holbrook NM; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
Pokaż więcej
Źródło :
American journal of botany [Am J Bot] 2020 Jun; Vol. 107 (6), pp. 852-863. Date of Electronic Publication: 2020 May 28.
Typ publikacji :
Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
Język :
Imprint Name(s) :
Publication: <2018-> : [Philadelphia, PA] : Wiley
Original Publication: Baltimore Md : Botanical Society Of America
MeSH Terms :
Plants ; Trees
References :
Aloni, R. 2015. Ecophysiological implications of vascular differentiation and plant evolution. Trees 29: 1-16.
Anfodillo, T., V. Carraro, M. Carrer, C. Fior, and S. Rossi. 2006. Convergent tapering of xylem conduits in different woody species. New Phytologist 169: 279-290.
Bettiati, D., G. Petit, and T. Anfodillo. 2012. Testing the equi-resistance principle of the xylem transport system in a small ash tree: empirical support from anatomical analyses. Tree Physiology 32: 171-177.
Canny, M. J. 1973. Phloem translocation. Cambridge University Press, Cambridge, UK.
Carvalho, M. R., R. Turgeon, T. Owens, and K. J. Niklas. 2017a. The scaling of the hydraulic architecture in poplar leaves. New Phytologist 214: 145-157.
Carvalho, M. R., R. Turgeon, T. Owens, and K. J. Niklas. 2017b. The hydraulic architecture of ginkgo leaves. American Journal of Botany 104: 1285-1298.
Dengler, N. G. 2001. Regulation of vascular development. Journal of Plant Growth Regulation 20: 1-13.
Esau, K., and V. I. Cheadle. 1961. An evaluation of studies on ultrastructure of sieve plates. Proceedings of the National Academy of Sciences, USA 47: 1716-1726.
Evert, R. F. 2006. Esau's plant anatomy meristems, cells, and tissues of the plant body: their structure, function, and development. John Wiley, Hoboken, NJ, USA.
Gould, N., M. R. Thorpe, O. Koroleva, and P. E. H. Minchin. 2005. Phloem hydrostatic pressure relates to solute loading rate: a direct test of the Münch hypothesis. Functional Plant Biology 32: 1019-1026.
Hölttä, T., M. Mencuccini, and E. Nikinmaa. 2009. Linking phloem function to structure: analysis with a coupled xylem-phloem transport model. Journal of Theoretical Biology 259: 325-337.
Jacobsen, A. L., J. Valdovinos-Ayala, F. D. Rodriguez-Zaccaro, M. A. Hill-Crim, M. I. Percolla, and M. D. Venturas. 2018. Intra-organismal variation in the structure of plant vascular transport tissues in poplar trees. Trees 32: 1335-1346.
Jensen, K. H., K. Berg-Sørensen, H. Bruus, N. M. Holbrook, J. Liesche, A. Schulz, M. A. Zwieniecki, and T. Bohr. 2016. Sap flow and sugar transport in plants. Reviews of Modern Physics 88: 035007.
Jensen, K. H., K. Berg-Sørensen, S. M. M. Friis, and T. Bohr. 2012b. Analytic solutions and universal properties of sugar loading models in Münch phloem flow. Journal of Theoretical Biology 204: 286-296.
Jensen, K. H., D. L. Mullendore, N. M. Holbrook, T. Bohr, M. Knoblauch, and H. Bruus. 2012a. Modeling the hydrodynamics of phloem sieve plates. Frontiers in Plant Science 3: 151.
Jensen, K. H., E. Rio, R. Hansen, C. Clanet, and T. Bohr. 2009. Osmotically driven pipe flows and their relation to sugar transport in plants. Journal of Fluid Mechanics 636: 371-396.
Jensen, K. H., J. A. Savage, and N. M. Holbrook. 2013. Optimal concentration for sugar transport in plants. Journal of the Royal Society Interface 10: 20130055.
Jyske, T., and T. Hölttä. 2015. Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytologist 205: 102-115.
Knoblauch, M., and W. S. Peters. 2010. Münch, morphology, microfluidics - our structural problem with the phloem. Plant, Cell & Environment 33: 1439-1452.
Knoblauch, M., J. Knoblauch, D. L. Mullendore, J. A. Savage, B. A. Babst, S. D. Beecher, A. C. Dodgen, et al. 2016. Testing the Münch hypothesis of long distance phloem transport in plants. Elife 5: e15341.
Lang, A. 1979. A relay mechanism for phloem translocation. Annals of Botany 44: 141-145.
Liesche, J., M. R. Pace, Q. Xu, Y. Li, and S. Chen. 2017. Height-related scaling of phloem anatomy and the evolution of sieve element end wall types in woody plants. New Phytologist 214: 245-256.
Losada, J. M., and N. M. Holbrook. 2019. Scaling of phloem resistance in stems and leaves of the understory angiosperm shrub Illicium parviflorum. American Journal of Botany 106: 244-259.
Mäkelä, A., L. Grönlund, P. Schiestl-Aalto, T. Kalliokoski, and T. Hölttä. 2019. Current-year shoot hydraulic structure in two boreal conifers-implications of growth habit on water potential. Tree Physiology 39: 1995-2007.
McCulloh, K. A., J. S. Sperry, and F. R. Adler. 2003. Water transport in plants obeys Murray's law. Nature 421: 939-942.
Mencuccini, M., T. Hölttä, and J. Martínez-Vilalta 2011. Comparative criteria for models of the vascular transport systems of tall trees. In F. C. Meinzer, B. Lachenbruch, and T. E. Dawson [eds.], Size- and age-related changes in tree structure and function, vol. 4, Tree physiology, 303-339. Dordrecht, Netherlands, Springer.
Mullendore, D. L., C. W. Windt, H. Van As, and M. Knoblauch. 2010. Sieve tube geometry in relation to phloem flow. Plant Cell 22: 579-593.
Münch, E. 1930. Die Stoffbewegungen in Der Pflanze. Fischer, Jena, Germany.
Murray, C. D. 1926. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proceedings of the National Academy of Sciences, USA 12: 207-214.
Olson, M. E., T. Anfodillo, J. A. Rosell, G. Petit, A. Crivellaro, S. Isnard, C. Leon-Gomez, et al. 2014. Universal hydraulics of the flowering plants: Vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecology Letters 17: 988-997.
Petit, G., and A. Crivellaro. 2014. Comparative axial widening of phloem and xylem conduits in small woody plants. Trees 28: 915-921.
Petit, G., S. Pfautsch, T. Anfodillo, and M. A. Adams. 2010. The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance. New Phytologist 187: 1146-1153.
Phillips, R. J., and S. R. Dungan. 1993. Asymptotic analysis of flow in sieve tube walls with semipermeable walls. Journal of Theoretical Biology 162: 465-485.
Savage, J. A., S. D. Beecher, L. Clerx, J. T. Gersony, J. Knoblauch, J. M. Losada, K. H. Jensen, et al. 2017. Maintenance of carbohydrate transport in tall trees. Nature Plants 3: 965-972.
Sevanto, S. 2014. Phloem transport and drought. Journal of Experimental Botany 65: 1751-1759.
Taiz, L., E. Zeiger, I. M. Moller, and A. Murphy. 2015. Plant physiology and development, 6th ed. Sinauer, Sunderland, MA, USA.
Thompson, M. V. 2006. Phloem: the long and the short of it. Trends in Plant Science 11: 26-32.
Thompson, M. V., and N. M. Holbrook. 2003. Application of a single-solute non-steady-state phloem model to the study of long-distance assimilate transport. Journal of Theoretical Biology 220: 419-455.
Turgeon, R. 2010. The puzzle of phloem pressure. Plant Physiology 154: 578-581.
Tyree, M. T., A. L. Christy, and J. M. Ferrier. 1974. A simpler iterative steady state solution of Münch pressure-flow systems applied to long and short translocation paths. Plant Physiology 54: 589-600.
West, G. B., J. H. Brown, and B. J. Enquist. 1999. A general model for the structure and allometry of plant vascular systems. Nature 400: 664-667.
Williams, C. B., T. Anfodillo, A. Crivellaro, M. Lazzarin, T. E. Dawson, and G. W. Koch. 2019. Axial variation of xylem conduits in the Earth's tallest trees. Trees 33: 1299-1311.
Contributed Indexing :
Keywords: Fagaceae*; allometry*; long distance transport*; phloem anatomy*; plant vascular architecture*; plant vascular transport*
Entry Date(s) :
Date Created: 20200530 Date Completed: 20200713 Latest Revision: 20200713
Update Code :
Czasopismo naukowe
Premise: The dimensions of phloem sieve elements have been shown to vary as a function of tree height, decreasing hydraulic resistance as the transport pathway lengthens. However, little is known about ontogenetic patterns of sieve element scaling. Here we examine within a single species (Quercus rubra) how decreases in hydraulic resistance with distance from the plant apex are mediated by overall plant size.
Methods: We sampled and imaged phloem tissue at multiple heights along the main stem and in the live crown of four size classes of trees using fluorescence and scanning electron microscopy. Sieve element length and radius, the number of sieve areas per compound plate, pore number, and pore radius were used to calculate total hydraulic resistance at each sampling location.
Results: Sieve element length varied with tree size, while sieve element radius, sieve pore radius, and the number of sieve areas per compound plate varied with sampling position. When data from all size classes were aggregated, all four variables followed a power-law trend with distance from the top of the tree. The net effect of these ontogenetic scalings was to make total hydraulic sieve tube resistance independent of tree height from 0.5 to over 20 m.
Conclusions: Sieve element development responded to two pieces of information, tree size and distance from the apex, in a manner that conserved total sieve tube resistance across size classes. A further differentiated response between the phloem in the live crown and in the main stem is also suggested.
(© 2020 Botanical Society of America.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies