Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A supramolecular system that strictly follows the binding mechanism of conformational selection.

Tytuł:
A supramolecular system that strictly follows the binding mechanism of conformational selection.
Autorzy:
Yang LP; Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China.
Zhang L; Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China.
Quan M; Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China.
Ward JS; Department of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyväskylä, Finland.
Ma YL; Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China.
Zhou H; Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China.
Rissanen K; Department of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyväskylä, Finland.
Jiang W; Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China. .
Źródło:
Nature communications [Nat Commun] 2020 Jun 02; Vol. 11 (1), pp. 2740. Date of Electronic Publication: 2020 Jun 02.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Biophysical Phenomena*
Protein Domains*
Proteins/*metabolism
Heterocyclic Compounds/chemistry ; Heterocyclic Compounds/metabolism ; Kinetics ; Ligands ; Models, Molecular ; Models, Theoretical ; Protein Binding ; Protein Conformation ; Proteins/chemistry ; Thermodynamics
References:
Baron, R. & McCammon, J. A. Molecular recognition and ligand association. Annu. Rev. Phys. Chem. 64, 151–197 (2013). (PMID: 10.1146/annurev-physchem-040412-110047)
Steed, J. W. & Gale, P. A. Supramolecular Chemistry: From Molecules to Nanomaterials Vol. 3 (Wiley, Hoboken, 2012).
Steuber, H. et al. Evidence for a novel binding site conformer of aldose reductase in ligand-bound state. J. Mol. Biol. 369, 186–197 (2007). (PMID: 10.1016/j.jmb.2007.03.021)
Changeux, J.-P. & Edelstein, S. Conformational selection or induced fit? 50 years of debate resolved. F1000 Biol. Rep. https://doi.org/10.3410/B3-19 (2011).
Koshland, D. E. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl Acad. Sci. USA 44, 98–104 (1958). (PMID: 10.1073/pnas.44.2.98)
Monod, J., Wyman, J. & Changeux, J.-P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965). (PMID: 10.1016/S0022-2836(65)80285-6)
Boehr, D. D., Nussinov, R. & Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009). (PMID: 10.1038/nchembio.232)
Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014). (PMID: 10.1038/nature13001)
Changeux, J.-P. & Edelstein, S. J. Allosteric mechanisms of signal transduction. Science 308, 1424–1428 (2005). (PMID: 10.1126/science.1108595)
Tsai, C.-J., Kumar, S., Ma, B. & Nussinov, R. Folding funnels, binding funnels, and protein function. Protein Sci. 8, 1181–1190 (1999). (PMID: 10.1110/ps.8.6.1181)
Vogt, A. D. & Di Cera, E. Conformational selection is a dominant mechanism of ligand binding. Biochemistry 52, 5723–5729 (2013). (PMID: 10.1021/bi400929b)
Gianni, S., Dogan, J. & Jemth, P. Distinguishing induced fit from conformational selection. Biophys. Chem. 189, 33–39 (2014). (PMID: 10.1016/j.bpc.2014.03.003)
Zhou, H.-X. From induced fit to conformational selection: a continuum of binding mechanism controlled by the timescale of conformational transititions. Biophys. J. 98, L15–L17 (2010). (PMID: 10.1016/j.bpj.2009.11.029)
Vogt, A. D. & Di Cera, E. Conformational selection or induced fit? a critical appraisal of the kinetic mechanism. Biochemistry 51, 5894–5902 (2012). (PMID: 10.1021/bi3006913)
Tummino, P. J. & Copeland, R. A. Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry 47, 5481–5492 (2008). (PMID: 10.1021/bi8002023)
Smirnova, I. et al. Oversized galactosides as a probe for conformational dynamics in LacY. Proc. Natl Acad. Sci. USA 115, 4146–4151 (2018). (PMID: 10.1073/pnas.1800706115)
Koester, S. K. et al. Residues W215, E217 and E192 control the allosteric E*-E equilibrium of thrombin. Sci. Rep. 9, 12304 (2019). (PMID: 10.1038/s41598-019-48839-1)
Sapotta, M., Spenst, P., Saha-Möller, C. R. & Würthner, F. Guest-mediated chirality transfer in the host-guest complex of an atropisomeric perylene bisimide cyclophane host. Org. Chem. Front. 6, 892–899 (2019). (PMID: 10.1039/C9QO00172G)
Hong, C. M., Kaphan, D. M., Bergman, R. G., Raymond, K. N. & Toste, F. D. Conformational selection as the mechanism of guest binding in a flexible supramolecular host. J. Am. Chem. Soc. 139, 8013–8021 (2017). (PMID: 10.1021/jacs.7b03812)
Ajami, D., Liu, L. & Rebek, J. Jr Soft templates in encapsulation complexes. Chem. Soc. Rev. 44, 490–499 (2015). (PMID: 10.1039/C4CS00065J)
Neri, P., Sessler, J. L. & Wang, M.-X. Calixarenes and Beyond (Springer, 2016).
Bohne, C. Supramolecular dynamics. Chem. Soc. Rev. 43, 4037–4050 (2014). (PMID: 10.1039/C3CS60352K)
Atwood, J. L. & Steed, J. W. Encyclopedia of Supramolecular Chemistry (Marcel Dekker Inc., 2004).
Jia, F. et al. Oxatub[4]arene: a smart macrocyclic receptor with multiple interconvertible cavities. Chem. Sci. 6, 6731–6738 (2015). (PMID: 10.1039/C5SC03251B)
Jia, F., Wang, H.-Y., Li, D.-H., Yang, L.-P. & Jiang, W. Oxatub[4]arene: a molecular “transformer” capable of hosting a wide range of organic cations. Chem. Commun. 52, 5666–5669 (2016). (PMID: 10.1039/C6CC01052K)
Li, D.-H. et al. Temperature-induced large amplitude conformational change in the complex of oxatub[4]arene revealed via rotaxane synthesis. Org. Chem. Front. 6, 1027–1031 (2019). (PMID: 10.1039/C9QO00159J)
Jia, F. et al. Naphthocage: A flexible yet extremely strong binder for singly charged organic cations. J. Am. Chem. Soc. 141, 4468–4473 (2019). (PMID: 10.1021/jacs.9b00445)
Huang, G.-B., Wang, S.-H., Ke, H., Yang, L.-P. & Jiang, W. Selective Recognition of highly hydrophilic molecules in water by endo-functionalized molecular tubes. J. Am. Chem. Soc. 138, 14550–14553 (2016). (PMID: 10.1021/jacs.6b09472)
Yao, H. et al. Molecular recognition of hydrophilic molecules in water by combining the hydrophobic effect with hydrogen bonding. J. Am. Chem. Soc. 140, 13466–13477 (2018). (PMID: 10.1021/jacs.8b09157)
Ke, H. et al. Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes. Nat. Chem. 11, 470–477 (2019). (PMID: 10.1038/s41557-019-0235-8)
Bai, L.-M., Yao, H., Yang, L.-P., Zhang, W. & Jiang, W. Molecular recognition and fluorescent sensing of urethane in water. Chin. Chem. Lett. 30, 881–884 (2019). (PMID: 10.1016/j.cclet.2018.11.033)
Yang, L.-P., Wang, X.-P., Yao, H. & Jiang, W. Naphthotubes: macrocyclic hosts with a biomimetic cavity feature. Acc. Chem. Res. 53, 198–208 (2020). (PMID: 10.1021/acs.accounts.9b00415)
Gasparro, F. P. & Kolodny, N. H. NMR determination of the rotational barrier in N,N-dimethylacetamide. a physical chemistry experiment. J. Chem. Educ. 54, 258–261 (1977). (PMID: 10.1021/ed054p258)
Abraham, R. J., Fisher, J. & Loftus, P. Introduction to NMR Spectroscopy (John Wiley & Sons Ltd., New York, 1988).
Csermely, P., Palotai, R. & Nussinov, R. Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem. Sci. 35, 539–546 (2010). (PMID: 10.1016/j.tibs.2010.04.009)
Khan, M. A. & Goss, D. J. Poly(A)-binding protein increases the binding affinity and kinetic rates of interaction of viral protein linked to genome with translation initiation factors eIFiso4F and eIFiso4F·4B complex. Biochemistry 51, 1388–1395 (2012). (PMID: 10.1021/bi201929h)
Ludlow, R. F. et al. Host-guest association constants can be estimated directly from the product distributions of dynamic combinatorial libraries. Angew. Chem. Int. Ed. 46, 5762–5764 (2007). (PMID: 10.1002/anie.200700292)
Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011). (PMID: 10.1039/C0CS00062K)
Spitzer, P., Zierhofer, C. & Hochmair, E. Algorithm for multi-curve-fitting with shared parameters and a possible application in evoked compound action potential measurements. Biomed. Eng. 5, 13 (2006).
Substance Nomenclature:
0 (Heterocyclic Compounds)
0 (Ligands)
0 (Proteins)
0 (macrocycle 1)
Entry Date(s):
Date Created: 20200604 Date Completed: 20200821 Latest Revision: 20210602
Update Code:
20240104
PubMed Central ID:
PMC7265396
DOI:
10.1038/s41467-020-16534-9
PMID:
32488094
Czasopismo naukowe
Induced fit and conformational selection are two dominant binding mechanisms in biology. Although induced fit has been widely accepted by supramolecular chemists, conformational selection is rarely studied with synthetic systems. In the present research, we report a macrocyclic host whose binding mechanism is unambiguously assigned to conformational selection. The kinetic and thermodynamic aspects of this system are studied in great detail. It reveals that the kinetic equation commonly used for conformational selection is strictly followed here. In addition, two mathematical models are developed to determine the association constants of the same guest to the two host conformations. A "conformational selectivity factor" is defined to quantify the fidelity of conformational selection. Many details about the kinetic and thermodynamic aspects of conformational selection are revealed by this synthetic system. The conclusion and the mathematical models reported here should be helpful in understanding complex molecular recognition in both biological and synthetic systems.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies