Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Current status and perspectives of patient-derived rare cancer models.

Tytuł:
Current status and perspectives of patient-derived rare cancer models.
Autorzy:
Kondo T; Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan. .
Źródło:
Human cell [Hum Cell] 2020 Oct; Vol. 33 (4), pp. 919-929. Date of Electronic Publication: 2020 Jun 14.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Publication: 2011- : Tokyo : Springer
Original Publication: Tōkyō-to : Hito Saibō Kenkyūkai : Kanishobo, Shōwa 63-nen [1988]-
MeSH Terms:
Rare Diseases*
Xenograft Model Antitumor Assays*/methods
Animals ; Cell Line, Tumor ; Humans ; Organoids ; Sarcoma
References:
RARECANCERNet. Information Network on Rare Cancers. [updated]. Available from: https://www.rarecarenet.eu/rarecarenet/ . Accessed 27 Apr 2020.
Gatta G, Capocaccia R, Botta L, et al. Burden and centralised treatment in Europe of rare tumours: results of RARECAREnet-a population-based study. Lancet Oncol. 2017;18:1022–39. (PMID: 2868737610.1016/S1470-2045(17)30445-X)
Tamaki T, Dong Y, Ohno Y, Sobue T, Nishimoto H, Shibata A. The burden of rare cancer in Japan: application of the RARECARE definition. Cancer Epidemiol. 2014;38:490–5. (PMID: 2515520910.1016/j.canep.2014.07.014)
Gatta G, van der Zwan JM, Casali PG, et al. Rare cancers are not so rare: the rare cancer burden in Europe. Eur J Cancer. 2011;47:2493–511. (PMID: 2203332310.1016/j.ejca.2011.08.008)
Ray-Coquard I, Thiesse P, Ranchere-Vince D, et al. Conformity to clinical practice guidelines, multidisciplinary management and outcome of treatment for soft tissue sarcomas. Ann Oncol. 2004;15:307–15. (PMID: 1476012710.1093/annonc/mdh058)
Gatta G, Capocaccia R, Trama A, Martinez-Garcia C. The burden of rare cancers in Europe. Adv Exp Med Biol. 2010;686:285–303. (PMID: 2082445210.1007/978-90-481-9485-8_17)
Casali PG, Bruzzi P, Bogaerts J, Blay JY. Rare Cancers Europe (RCE) methodological recommendations for clinical studies in rare cancers: a European consensus position paper. Ann Oncol. 2015;26:300–6. (PMID: 2527461610.1093/annonc/mdu459)
Bogaerts J, Sydes MR, Keat N, et al. Clinical trial designs for rare diseases: studies developed and discussed by the International Rare Cancers Initiative. Eur J Cancer. 2015;51:271–81. (PMID: 25542058463969610.1016/j.ejca.2014.10.027)
Boyd N, Dancey JE, Gilks CB, Huntsman DG. Rare cancers: a sea of opportunity. Lancet Oncol. 2016;17:e52–e61. (PMID: 2686835410.1016/S1470-2045(15)00386-1)
Blay JY, Coindre JM, Ducimetiere F, Ray-Coquard I. The value of research collaborations and consortia in rare cancers. Lancet Oncol. 2016;17:e62–e6969. (PMID: 2686835510.1016/S1470-2045(15)00388-5)
Billingham L, Malottki K, Steven N. Research methods to change clinical practice for patients with rare cancers. Lancet Oncol. 2016;17:e70–e80. (PMID: 2686835610.1016/S1470-2045(15)00396-4)
AACR Project GENIE. Powering precision medicine through an international consortium. Cancer Discov. 2017;7:818–31. (PMID: 10.1158/2159-8290.CD-17-0151)
Corsello SM, Bittker JA, Liu Z, et al. The drug repurposing hub: a next-generation drug library and information resource. Nat Med. 2017;23:405–8. (PMID: 28388612556855810.1038/nm.4306)
Hudson TJ, Anderson W, Artez A, et al. International network of cancer genome projects. Nature. 2010;464:993–8. (PMID: 2039355410.1038/nature08987)
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7. (PMID: 10.1038/nature11252)
Kandoth C, Schultz N, Cherniack AD, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:67–73. (PMID: 2363639810.1038/nature12113)
Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9. (PMID: 10.1038/nature12222)
Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7. (PMID: 1128797210.1056/NEJM200104053441401)
Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 2003;21:4342–9. (PMID: 1464542310.1200/JCO.2003.04.190)
Mitsudomi T, Kosaka T, Endoh H, et al. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol. 2005;23:2513–20. (PMID: 1573854110.1200/JCO.2005.00.992)
Patani N, Martin LA, Dowsett M. Biomarkers for the clinical management of breast cancer: international perspective. Int J Cancer. 2013;133:1–13. (PMID: 2328057910.1002/ijc.27997)
Bollag G, Hirth P, Tsai J, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467:596–9. (PMID: 20823850294808210.1038/nature09454)
Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19. (PMID: 20818844372452910.1056/NEJMoa1002011)
Zia MI, Siu LL, Pond GR, Chen EX. Comparison of outcomes of phase II studies and subsequent randomized control studies using identical chemotherapeutic regimens. J Clin Oncol. 2005;23:6982–91. (PMID: 1619258510.1200/JCO.2005.06.679)
Chan JK, Ueda SM, Sugiyama VE, et al. Analysis of phase II studies on targeted agents and subsequent phase III trials: what are the predictors for success? J Clin Oncol. 2008;26:1511–8. (PMID: 1828560310.1200/JCO.2007.14.8874)
Maitland ML, Hudoba C, Snider KL, Ratain MJ. Analysis of the yield of phase II combination therapy trials in medical oncology. Clin Cancer Res. 2010;16:5296–302. (PMID: 20837695297072310.1158/1078-0432.CCR-10-0669)
Nottage M, Siu LL. Principles of clinical trial design. J Clin Oncol. 2002;20:42s–s4646. (PMID: 1223522410.1200/JCO.2002.20.1.42)
Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32:40–51. (PMID: 2440692710.1038/nbt.2786)
Aitken M, Kleinrock M, Simorellis A, Nass D (2018) Global Oncology Trends 2018: Innovation, Expansion and Disruption. IQVIA Institute for Human Data Science.
Marquart J, Chen EY, Prasad V. Estimation of the percentage of US patients with cancer who benefit from genome-driven oncology. JAMA Oncol. 2018;4:1093–8. (PMID: 29710180614304810.1001/jamaoncol.2018.1660)
Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16. (PMID: 21639808354929610.1056/NEJMoa1103782)
Hyman DM, Puzanov I, Subbiah V, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. New Engl J Med. 2015;373:726–36. (PMID: 2628784910.1056/NEJMoa1502309)
Kopetz S, Desai J, Chan E, et al. Phase II pilot study of vemurafenib in patients with metastatic braf-mutated colorectal cancer. J Clin Oncol. 2015;33:4032–8. (PMID: 26460303466958910.1200/JCO.2015.63.2497)
Sharifnia T, Hong AL, Painter CA, Boehm JS. Emerging opportunities for target discovery in rare cancers. Cell Chem Biol. 2017;24:1075–91. (PMID: 28938087585717810.1016/j.chembiol.2017.08.002)
Prahallad A, Sun C, Huang S, et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483:100–3. (PMID: 2228168410.1038/nature10868)
Corcoran RB, Ebi H, Turke AB, et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2012;2:227–35. (PMID: 22448344330819110.1158/2159-8290.CD-11-0341)
Mao M, Tian F, Mariadason JM, et al. Resistance to BRAF inhibition in BRAF-mutant colon cancer can be overcome with PI3K inhibition or demethylating agents. Clin Cancer Res. 2013;19:657–67. (PMID: 2325100210.1158/1078-0432.CCR-11-1446)
Tsimberidou AM, Wen S, Hong DS, et al. Personalized medicine for patients with advanced cancer in the phase I program at MD Anderson: validation and landmark analyses. Clin Cancer Res. 2014;20:4827–36. (PMID: 24987059451886710.1158/1078-0432.CCR-14-0603)
Andre F, Bachelot T, Commo F, et al. Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). Lancet Oncol. 2014;15:267–74. (PMID: 2450810410.1016/S1470-2045(13)70611-9)
Vansteenkiste JF, Canon JL, De Braud F, et al. Safety and Efficacy of Buparlisib (BKM120) in patients with PI3K pathway-activated non-small cell lung cancer: results from the Phase II BASALT-1 study. J Thorac Oncol. 2015;10:1319–27. (PMID: 26098748464660710.1097/JTO.0000000000000607)
Garraway LA, Sellers WR. Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer. 2006;6:593–602. (PMID: 1686219010.1038/nrc1947)
Sharma SV, Haber DA, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 2010;10:241–53. (PMID: 2030010510.1038/nrc2820)
Iorio F, Knijnenburg TA, Vis DJ, et al. A landscape of pharmacogenomic interactions in cancer. Cell. 2016;166:740–54. (PMID: 27397505496746910.1016/j.cell.2016.06.017)
Holbeck SL, Collins JM, Doroshow JH. Analysis of food and drug administration-approved anticancer agents in the NCI60 panel of human tumor cell lines. Mol Cancer Ther. 2010;9:1451–60. (PMID: 20442306286807810.1158/1535-7163.MCT-10-0106)
Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483:570–5. (PMID: 22460902334923310.1038/nature11005)
Basu A, Bodycombe NE, Cheah JH, et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell. 2013;154:1151–61. (PMID: 23993102395463510.1016/j.cell.2013.08.003)
Lamb J, Crawford ED, Peck D, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929–35. (PMID: 1700852610.1126/science.1132939)
Boehm JS, Golub TR. An ecosystem of cancer cell line factories to support a cancer dependency map. Nat Rev Genet. 2015;16:373–4. (PMID: 2607736910.1038/nrg3967)
Tsherniak A, Vazquez F, Montgomery PG, et al. Defining a cancer dependency map. Cell. 2017;170(564–76):e16.
McDonald ER 3rd, de Weck A, Schlabach MR, et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell. 2017;170(577–92):e10.
Lin A, Giuliano CJ, Palladino A, et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med. 2019;11:eaaw8412. (PMID: 3151142610.1126/scitranslmed.aaw84127717492)
Gillet JP, Calcagno AM, Varma S, et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci USA. 2011;108:18708–13. (PMID: 2206891310.1073/pnas.11118401083219108)
Hausser HJ, Brenner RE. Phenotypic instability of Saos-2 cells in long-term culture. Biochem Biophys Res Commun. 2005;333:216–22. (PMID: 1593939710.1016/j.bbrc.2005.05.097)
Ben-David U, Siranosian B, Ha G, et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature. 2018;560:325–30. (PMID: 30089904652222210.1038/s41586-018-0409-3)
Lee JK, Liu Z, Sa JK, et al. Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat Genet. 2018;50:1399–411. (PMID: 3026281810.1038/s41588-018-0209-68514738)
Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013;4:2126. (PMID: 2383924210.1038/ncomms3126)
Calles A, Rubio-Viqueira B, Hidalgo M. Primary human non-small cell lung and pancreatic tumorgraft models–utility and applications in drug discovery and tumor biology. Curr Protoc Pharmacol. 2013;61:14–26.
Tentler JJ, Tan AC, Weekes CD, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9:338–50. (PMID: 22508028392868810.1038/nrclinonc.2012.61)
Hoffman RM. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer. 2015;15:451–2. (PMID: 2642283510.1038/nrc3972)
Fiebig HH, Neumann HA, Henss H, Koch H, Kaiser D, Arnold H. Development of three human small cell lung cancer models in nude mice. Recent Results Cancer Res. 1985;97:77–86. (PMID: 298624710.1007/978-3-642-82372-5_8)
Izumchenko E, Paz K, Ciznadija D, et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann Oncol. 2017;28:2595–605. (PMID: 28945830583415410.1093/annonc/mdx416)
Gao H, Korn JM, Ferretti S, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21:1318–25. (PMID: 2647992310.1038/nm.3954)
Townsend EC, Murakami MA, Christodoulou A, et al. The public repository of xenografts enables discovery and randomized phase II-like trials in mice. Cancer Cell. 2016;29:574–86. (PMID: 27070704517799110.1016/j.ccell.2016.03.008)
Bruna A, Rueda OM, Greenwood W, et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell. 2016;167(260–74):e22.
Olson B, Li Y, Lin Y, Liu ET, Patnaik A. Mouse models for cancer immunotherapy research. Cancer Discov. 2018;8:1358–65. (PMID: 3030986210.1158/2159-8290.CD-18-00448725605)
Eirew P, Steif A, Khattra J, et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature. 2015;518:422–6. (PMID: 2547004910.1038/nature13952)
Ben-David U, Ha G, Tseng YY, et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet. 2017;49:1567–75. (PMID: 28991255565995210.1038/ng.3967)
Whiteford CC, Bilke S, Greer BT, et al. Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res. 2007;67:32–40. (PMID: 1721068110.1158/0008-5472.CAN-06-0610)
Byrne AT, Alferez DG, Amant F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017;17:254–68. (PMID: 2810490610.1038/nrc.2016.140)
Collins AT, Lang SH. A systematic review of the validity of patient derived xenograft (PDX) models: the implications for translational research and personalised medicine. PeerJ. 2018;6:e5981. (PMID: 30498642625206210.7717/peerj.5981)
Clevers H. Modeling development and disease with organoids. Cell. 2016;165:1586–97. (PMID: 2731547610.1016/j.cell.2016.05.082)
Weeber F, Ooft SN, Dijkstra KK, Voest EE. Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol. 2017;24:1092–100. (PMID: 2875718110.1016/j.chembiol.2017.06.012)
van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45. (PMID: 25957691642827610.1016/j.cell.2015.03.053)
Yan HHN, Siu HC, Law S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell. 2018;23(882–97):e11.
Seino T, Kawasaki S, Shimokawa M, et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell. 2018;22(454–67):e6.
Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172(373–86):e10.
Lee SH, Hu W, Matulay JT, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 2018;173(515–28):e17.
Beshiri ML, Tice CM, Tran C, et al. A PDX/organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin Cancer Res. 2018;24:4332–455. (PMID: 29748182612520210.1158/1078-0432.CCR-18-0409)
Calandrini C, Schutgens F, Oka R, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat Commun. 2020;11:1310. (PMID: 32161258706617310.1038/s41467-020-15155-6)
Jacob F, Salinas RD, Zhang DY, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 2020;180(188–204):e22.
Tiriac H, Belleau P, Engle DD, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 2018;8:1112–29. (PMID: 29853643612521910.1158/2159-8290.CD-18-0349)
Ooft SN, Weeber F, Dijkstra KK, et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med. 2019;11:eaay2574. (PMID: 3159775110.1126/scitranslmed.aay2574)
Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175(1972–88):e16.
Kondo J, Endo H, Okuyama H, et al. Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc Natl Acad Sci USA. 2011;108:6235–40. (PMID: 2144479410.1073/pnas.10159381083076886)
Komatsu A, Matsumoto K, Saito T, Muto M, Tamanoi F. Patient derived chicken egg tumor model (pdce model): current status and critical issues. Cells. 2019;8:440. (PMID: 656282310.3390/cells8050440)
Fazio M, Ablain J, Chuan Y, Langenau DM, Zon LI. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat Rev Cancer. 2020;20:263–73. (PMID: 3225139710.1038/s41568-020-0252-38011456)
Kato S, Kurasaki K, Ikeda S, Kurzrock R. Rare tumor clinic: the university of california san diego moores cancer center experience with a precision therapy approach. Oncologist. 2018;23:171–8. (PMID: 2903823510.1634/theoncologist.2017-0199)
Miller RW, Young JL Jr, Novakovic B. Childhood cancer. Cancer. 1995;75:395–405. (PMID: 800101010.1002/1097-0142(19950101)75:1+<395::AID-CNCR2820751321>3.0.CO;2-W)
Siegel RL, Miller KD, Jemal A. Cancer statistics 2020. CA Cancer J Clin. 2020;70:7–30. (PMID: 10.3322/caac.2159031912902)
Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F. WHO classification of tumours of soft tissue and bone. Geneva: WHO Press; 2013.
Borden EC, Baker LH, Bell RS, et al. Soft tissue sarcomas of adults: state of the translational science. Clin Cancer Res. 2003;9:1941–56. (PMID: 12796356)
Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat Rev Cancer. 2003;3:685–94. (PMID: 1295158710.1038/nrc1168)
Taylor BS, Barretina J, Maki RG, Antonescu CR, Singer S, Ladanyi M. Advances in sarcoma genomics and new therapeutic targets. Nat Rev Cancer. 2011;11:541–57. (PMID: 21753790336189810.1038/nrc3087)
van Oosterom AT, Judson I, Verweij J, et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet. 2001;358:1421–3. (PMID: 1170548910.1016/S0140-6736(01)06535-7)
Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347:472–80. (PMID: 1218140110.1056/NEJMoa020461)
Blanke CD, Rankin C, Demetri GD, et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008;26:626–32. (PMID: 1823512210.1200/JCO.2007.13.4452)
van der Graaf WT, Blay JY, Chawla SP, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012;379:1879–86. (PMID: 2259579910.1016/S0140-6736(12)60651-5)
Nakamura T, Matsumine A, Kawai A, et al. The clinical outcome of pazopanib treatment in Japanese patients with relapsed soft tissue sarcoma: a Japanese Musculoskeletal Oncology Group (JMOG) study. Cancer. 2016;122:1408–16. (PMID: 2697017410.1002/cncr.29961)
Demetri GD, von Mehren M, Jones RL, et al. Efficacy and safety of trabectedin or dacarbazine for metastatic liposarcoma or leiomyosarcoma after failure of conventional chemotherapy: results of a phase III randomized multicenter clinical trial. J Clin Oncol. 2016;34:786–93. (PMID: 2637114310.1200/JCO.2015.62.4734)
Schoffski P, Chawla S, Maki RG, et al. Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial. Lancet. 2016;387:1629–37. (PMID: 2687488510.1016/S0140-6736(15)01283-0)
Wilding CP, Elms ML, Judson I, Tan AC, Jones RL, Huang PH. The landscape of tyrosine kinase inhibitors in sarcomas: looking beyond pazopanib. Expert Rev Anticancer Ther. 2019;19:971–91. (PMID: 31665941688231410.1080/14737140.2019.1686979)
Verweij J. Soft tissue sarcoma trials: one size no longer fits all. J Clin Oncol. 2009;27:3085–7. (PMID: 1945142410.1200/JCO.2009.21.8180)
Teicher BA, Polley E, Kunkel M, et al. Sarcoma cell line screen of oncology drugs and investigational agents identifies patterns associated with gene and microRNA expression. Mol Cancer Ther. 2015;14:2452–62. (PMID: 26351324463647610.1158/1535-7163.MCT-15-0074)
Brodin BA, Wennerberg K, Lidbrink E, et al. Drug sensitivity testing on patient-derived sarcoma cells predicts patient response to treatment and identifies c-Sarc inhibitors as active drugs for translocation sarcomas. Br J Cancer. 2019;120:435–43. (PMID: 30745580646203710.1038/s41416-018-0359-4)
Stebbing J, Paz K, Schwartz GK, et al. Patient-derived xenografts for individualized care in advanced sarcoma. Cancer. 2014;120:2006–155. (PMID: 2470596310.1002/cncr.28696)
Nanni P, Landuzzi L, Manara MC, et al. Bone sarcoma patient-derived xenografts are faithful and stable preclinical models for molecular and therapeutic investigations. Sci Rep. 2019;9:12174. (PMID: 31434953670406610.1038/s41598-019-48634-y)
Hattori E, Oyama R, Kondo T. Systematic review of the current status of human sarcoma cell lines. Cells. 2019;8:157. (PMID: 640674510.3390/cells8020157)
Bairoch A. The cellosaurus, a cell-line knowledge resource. J Biomol Tech. 2018;29:25–38. (PMID: 29805321594502110.7171/jbt.18-2902-002)
Conte N, Mason JC, Halmagyi C, et al. PDX Finder: a portal for patient-derived tumor xenograft model discovery. Nucleic Acids Res. 2019;47:D1073–D10791079. (PMID: 3053523910.1093/nar/gky984)
Bleijs M, van de Wetering M, Clevers H, Drost J. Xenograft and organoid model systems in cancer research. Embo j. 2019;38:e101654. (PMID: 31282586667001510.15252/embj.2019101654)
Giard DJ, Aaronson SA, Todaro GJ, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417–23. (PMID: 435775810.1093/jnci/51.5.1417)
Lu W, Chao T, Ruiqi C, Juan S, Zhihong L. Patient-derived xenograft models in musculoskeletal malignancies. J Transl Med. 2018;16:107. (PMID: 29688859591380610.1186/s12967-018-1487-6)
Liu X, Krawczyk E, Suprynowicz FA, et al. Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nat Protoc. 2017;12:439–51. (PMID: 28125105619512010.1038/nprot.2016.174)
Pretlow TG, Delmoro CM, Dilley GG, Spadafora CG, Pretlow TP. Transplantation of human prostatic carcinoma into nude mice in Matrigel. Cancer Res. 1991;51:3814–7. (PMID: 2065335)
Hoon Tan P, Ellis I, Allison K, et al. (2020) WHO Classification of Tumours Editorial Board. Breast Tumours. World Health Organization; 2019.
Li T, Kung HJ, Mack PC, Gandara DR. Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol. 2013;31:1039–49. (PMID: 23401433358970010.1200/JCO.2012.45.3753)
Oyama R, Kito F, Takahashi M, et al. Establishment and characterization of patient-derived cancer models of malignant peripheral nerve sheath tumors. Cancer Cell Int. 2020;20:58. (PMID: 32099531703193510.1186/s12935-020-1128-z)
Sugawara M, Kobayashi E, Asano N, Yoshida A, Kawai A. Malignant peripheral nerve sheath tumor of the femur: a rare diagnosis supported by complete immunohistochemical loss of H3K27me3. Int J Surg Pathol. 2017;25:629–34. (PMID: 2850868610.1177/1066896917709580)
Oyama R, Takahashi M, Kito F, et al. Esablishment and characterization of patient-derived pleomorphic rhabdomyosarcoma models. Tiss Cult Res Cimmun. 2019;38:1–12.
Yoshimatsu Y, Noguchi R, Tsuchiya R, et al. Establishment and characterization of NCC-ssRMS1-C1: a novel patient-derived spindle-cell/sclerosing rhabdomyosarcoma cell line. Hum Cell. 2020. https://doi.org/10.1007/s13577-020-00359-1 . (PMID: 10.1007/s13577-020-00359-133205363)
Kito F, Oyama R, Takai Y, et al. Establishment and characterization of the NCC-SS1-C1 synovial sarcoma cell line. Hum Cell. 2018;31:167–74. (PMID: 2945070210.1007/s13577-018-0199-9)
Oyama R, Kito F, Sakumoto M, et al. Establishment and proteomic characterization of a novel synovial sarcoma cell line, NCC-SS2-C1. Vitro Cell Dev Biol Anim. 2018;54:392–9. (PMID: 10.1007/s11626-018-0237-7)
Yoshimatsu Y, Noguchi R, Tsuchiya R, et al. Establishment and characterization of NCC-SS3-C1: a novel patient-derived cell line of synovial sarcoma. Hum Cell. 2020. https://doi.org/10.1007/s13577-020-00354-6 . (PMID: 10.1007/s13577-020-00354-633205363)
Oyama R, Kito F, Qiao Z, et al. Establishment of novel patient-derived models of dermatofibrosarcoma protuberans: two cell lines, NCC-DFSP1-C1 and NCC-DFSP2-C1. Vitro Cell Dev Biol Anim. 2019;55:62–73. (PMID: 10.1007/s11626-018-0305-z)
Yoshimatsu Y, Noguchi R, Tsuchiya R, et al. Establishment and characterization of NCC-DFSP3-C1: a novel patient-derived dermatofibrosarcoma protuberans cell line. Hum Cell. 2020. https://doi.org/10.1007/s13577-020-00365-3 . (PMID: 10.1007/s13577-020-00365-333205363)
Takai Y, Oyama R, Kito F, et al. Establishement and characterization of cell lined of undifferentiated pleomorphic sarcoma. Tiss Cult Res Comm. 2017;36:41–8.
Kito F, Oyama R, Takahashi M, et al. Establishemnt and characterization of a patient-derived cancer model of undifferentiated pleomorphic sarcoma. Tiss Cult Res Cimmun. 2018;37:133–45.
Oyama R, Kito F, Sakumoto M, et al. Establishment and proteomic characterization of a novel cell line, NCC-UPS2-C1, derived from a patient with undifferentiated pleomorphic sarcoma. Vitro Cell Dev Biol Anim. 2018;54:257–63. (PMID: 10.1007/s11626-018-0229-7)
Oyama R, Takahashi M, Yoshida A, et al. Generation of novel patient-derived CIC-DUX4 sarcoma xenografts and cell lines. Scientific reports. 2017;7:4712. (PMID: 28680140549848610.1038/s41598-017-04967-0)
Yoshimatsu Y, Noguchi R, Tsuchiya R, et al. Establishment and characterization of NCC-CDS2-C1: a novel patient-derived cell line of CIC-DUX4 sarcoma. Hum Cell. 2020;33:427–36. (PMID: 3189819510.1007/s13577-019-00312-x)
Kito F, Oyama R, Sakumoto M, et al. Establishment and characterization of novel patient-derived osteosarcoma xenograft and cell line. Vitro Cell Dev Biol Anim. 2018;54:528–36. (PMID: 10.1007/s11626-018-0274-2)
Kito F, Oyama R, Noguchi R, et al. Establishment and characterization of novel patient-derived extraskeletal osteosarcoma cell line NCC-ESOS1-C1. Hum Cell. 2020;33:283–90. (PMID: 3162512410.1007/s13577-019-00291-z)
Oyama R, Kito F, Takahashi M, et al. Establishment and characterization of a novel dedifferentiated chondrosarcoma cell line, NCC-dCS1-C1. Hum Cell. 2019;32:202–13. (PMID: 3073771310.1007/s13577-018-00232-2)
Sakumoto M, Oyama R, Takahashi M, et al. Establishment and proteomic characterization of patient-derived clear cell sarcoma xenografts and cell lines. Vitro Cell Dev Biol Anim. 2018;54:163–76. (PMID: 10.1007/s11626-017-0207-5)
Sakumoto M, Takahashi M, Oyama R, et al. Establishment and proteomic characterization of NCC-LMS1-C1, a novel cell line of primary leiomyosarcoma of the bone. Jpn J Clin Oncol. 2017;47:954–61. (PMID: 2898173010.1093/jjco/hyx096)
Oyama R, Takahashi M, Kito F, et al. Establishment and characterization of patient-derived xenograft and its cell line of primary leiomyosarcoma of bone. Vitro Cell Dev Biol Anim. 2018;54:458–67. (PMID: 10.1007/s11626-018-0258-2)
Oyama R, Kito F, Qiao Z, et al. Establishment of a novel patient-derived Ewing's sarcoma cell line, NCC-ES1-C1. In vitro Cell Dev Biol Anim. 2018;54:770–8. (PMID: 3032424410.1007/s11626-018-0302-2)
Kito F, Oyama R, Sakumoto M, et al. Establishment and characterization of a novel cell line, NCC-MFS1-C1, derived from a patient with myxofibrosarcoma. Hum Cell. 2019;32:214–22. (PMID: 3073771210.1007/s13577-018-00233-1)
Yoshimatsu Y, Noguchi R, Tsuchiya R, et al. (2020) Establishment and characterization of NCC-ASPS1-C1: a novel patient-derived cell line of alveolar soft-part sarcoma. Hum Cell.
Grant Information:
20ck0106537h0001 Japan Agency for Medical Research and Development
Contributed Indexing:
Keywords: Cell line; Organoid; Patient-derived cancer model; Rare cancer; Xenograft
Entry Date(s):
Date Created: 20200616 Date Completed: 20201027 Latest Revision: 20220531
Update Code:
20240105
DOI:
10.1007/s13577-020-00391-1
PMID:
32537685
Czasopismo naukowe
Malignancies with extremely low incidences, such as less than 6 per 100,000 people annually, are defined as rare cancers. Approximately 200 malignancies are classified in this category, therefore the total number of patients with rare cancers is greater than that of patients with any single common cancer. However, because of the small numbers of patients, novel therapies have not been developed for individual rare cancers, and clinical outcomes remain dismal. Patient-derived cancer models are indispensable for both basic and pre-clinical studies, and their roles will increase in the era of post-genome medicine. Although patient-derived cancer models have long been used in oncology, they are not well developed for rare cancers. In the context of sarcoma, the presently available cell lines and xenograft models are limited and do not satisfy the needs of research. Indeed, the lack of effective therapies for rare cancers might be attributable to the paucity of adequate patient-derived cancer models for pre-clinical studies. To facilitate the establishment and availability of patient-derived rare cancer models, we need to create effective methods for model establishment, share the valuable clinical samples and established models, and implement guidelines to record the clinical data of donor patients and original tumors. Patient-derived rare cancer models are a public resource, and they should not be used exclusively but should rather be shared among the research community.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies