Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Structural basis for chemokine receptor CCR6 activation by the endogenous protein ligand CCL20.

Tytuł:
Structural basis for chemokine receptor CCR6 activation by the endogenous protein ligand CCL20.
Autorzy:
Wasilko DJ; Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA.
Johnson ZL; Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA.
Ammirati M; Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA.
Che Y; Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA.
Griffor MC; Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA.
Han S; Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA.
Wu H; Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA. .
Źródło:
Nature communications [Nat Commun] 2020 Jun 15; Vol. 11 (1), pp. 3031. Date of Electronic Publication: 2020 Jun 15.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Chemokine CCL20/*metabolism
Receptors, CCR6/*chemistry
Receptors, CCR6/*metabolism
Chemokine CCL20/chemistry ; Chemokine CCL20/genetics ; Cryoelectron Microscopy ; Humans ; Ligands ; Protein Binding ; Receptors, CCR6/genetics ; Receptors, G-Protein-Coupled ; Signal Transduction
References:
Murphy, P. M. et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharm. Rev. 52, 145–176 (2000). (PMID: 10699158)
Fernandez, E. J. & Lolis, E. Structure, function, and inhibition of chemokines. Annu Rev. Pharm. Toxicol. 42, 469–499 (2002). (PMID: 10.1146/annurev.pharmtox.42.091901.115838)
Burg, J. S. et al. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347, 1113–1117 (2015). (PMID: 25745166444537610.1126/science.aaa5026)
Qin, L. et al. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 347, 1117–1122 (2015). (PMID: 25612609436269310.1126/science.1261064)
Zheng, Y. et al. Structure of CC chemokine receptor 5 with a potent chemokine antagonist reveals mechanisms of chemokine recognition and molecular mimicry by HIV. Immunity 46, 1005–1017 e1005 (2017). (PMID: 28636951557256310.1016/j.immuni.2017.05.002)
Weis, W. I. & Kobilka, B. K. The molecular basis of G protein-coupled receptor activation. Annu Rev. Biochem 87, 897–919 (2018). (PMID: 29925258653533710.1146/annurev-biochem-060614-033910)
Hedrick, M. N., Lonsdorf, A. S., Hwang, S. T. & Farber, J. M. CCR6 as a possible therapeutic target in psoriasis. Expert Opin. Ther. Targets 14, 911–922 (2010). (PMID: 20629596370080510.1517/14728222.2010.504716)
Marafini, I. et al. CCL20 is negatively regulated by TGF-beta1 in intestinal epithelial cells and reduced in Crohn’s disease patients with a successful response to mongersen, a Smad7 antisense oligonucleotide. J. Crohns Colitis 11, 603–609 (2017). (PMID: 28453765)
Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20, 967–976 (2012). (PMID: 22681902337561110.1016/j.str.2012.04.010)
Nehme, R. et al. Mini-G proteins: novel tools for studying GPCRs in their active conformation. PLoS One 12, e0175642 (2017). (PMID: 28426733539854610.1371/journal.pone.0175642)
Koehl, A. et al. Structure of the micro-opioid receptor-Gi protein complex. Nature 558, 547–552 (2018). (PMID: 29899455631790410.1038/s41586-018-0219-7)
Wu, H. et al. Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485, 327–332 (2012). (PMID: 22437504335645710.1038/nature10939)
Ai, L. S. & Liao, F. Mutating the four extracellular cysteines in the chemokine receptor CCR6 reveals their differing roles in receptor trafficking, ligand binding, and signaling. Biochemistry 41, 8332–8341 (2002). (PMID: 1208148110.1021/bi025855y)
Wells, T. N. C. et al. The molecular basis of the chemokine/chemokine receptor interaction-scope for design of chemokine antagonists. Methods 10, 126–134 (1996). (PMID: 881265210.1006/meth.1996.0086)
Riutta, S. J. et al. Mutational analysis of CCL20 reveals flexibility of N-terminal amino acid composition and length. J. Leukoc. Biol. 104, 423–434 (2018). (PMID: 3011434010.1002/JLB.1VMA0218-049R)
Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 25, 63 (1995).
Henriksson, G., Englund, A. K., Johansson, G. & Lundahl, P. Calculation of the isoelectric points of native proteins with spreading of pKa values. Electrophoresis 16, 1377–1380 (1995). (PMID: 852960010.1002/elps.11501601227)
Nelson, R. T. et al. Genomic organization of the CC chemokine mip-3alpha/CCL20/larc/exodus/SCYA20, showing gene structure, splice variants, and chromosome localization. Genomics 73, 28–37 (2001). (PMID: 1135256310.1006/geno.2001.6482)
Liston, A. et al. Inhibition of CCR6 function reduces the severity of experimental autoimmune encephalomyelitis via effects on the priming phase of the immune response. J. Immunol. 182, 3121–3130 (2009). (PMID: 1923420910.4049/jimmunol.0713169)
Xu, F. et al. Structure of an agonist-bound human A2A adenosine receptor. Science 332, 322–327 (2011). (PMID: 21393508308681110.1126/science.1202793)
Huang, W. et al. Structural insights into micro-opioid receptor activation. Nature 524, 315–321 (2015). (PMID: 26245379463939710.1038/nature14886)
Che, T. et al. Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell 172, 55–67 e15 (2018). (PMID: 29307491580237410.1016/j.cell.2017.12.011)
Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013). (PMID: 24256733402078910.1038/nature12735)
Jaeger, K. et al. Structural basis for allosteric ligand recognition in the human CC chemokine receptor 7. Cell 178, 1222–1230 e1210 (2019). (PMID: 31442409670978310.1016/j.cell.2019.07.028)
Oswald, C. et al. Intracellular allosteric antagonism of the CCR9 receptor. Nature 540, 462–465 (2016). (PMID: 2792672910.1038/nature20606)
Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469, 175–180 (2011). (PMID: 21228869305830810.1038/nature09648)
Krishna Kumar, K. et al. Structure of a signaling cannabinoid receptor 1-G protein complex. Cell 176, 448–458 e412 (2019). (PMID: 3063910110.1016/j.cell.2018.11.040)
Rasmussen, S. G. et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011). (PMID: 21772288318418810.1038/nature10361)
Garcia-Nafria, J., Nehme, R., Edwards, P. C. & Tate, C. G. Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go. Nature 558, 620–623 (2018). (PMID: 29925951602798910.1038/s41586-018-0241-9)
Maeda, S., Qu, Q., Robertson, M. J., Skiniotis, G. & Kobilka, B. K. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 364, 552–557 (2019). (PMID: 31073061703419210.1126/science.aaw5188)
Kato, H. E. et al. Conformational transitions of a neurotensin receptor 1-Gi1 complex. Nature 572, 80–85 (2019). (PMID: 31243364706559310.1038/s41586-019-1337-6)
Tsai, C. J. et al. Cryo-EM structure of the rhodopsin-Galphai-betagamma complex reveals binding of the rhodopsin C-terminal tail to the gbeta subunit. Elife 8, https://doi.org/10.7554/eLife.46041 (2019).
Koehl, A. et al. Structural insights into the activation of metabotropic glutamate receptors. Nature 566, 79–84 (2019). (PMID: 30675062670960010.1038/s41586-019-0881-4)
Wu, H. et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344, 58–64 (2014). (PMID: 24603153399156510.1126/science.1249489)
Ramamourthy, G., Arias, M., Nguyen, L. T., Ishida, H. & Vogel, H. J. Expression and purification of chemokine MIP-3alpha (CCL20) through a calmodulin-fusion protein system. Microorganisms 7, https://doi.org/10.3390/microorganisms7010008 (2019).
Kapust, R. B., Tozser, J., Copeland, T. D. & Waugh, D. S. The P1’ specificity of tobacco etch virus protease. Biochem. Biophys. Res. Commun. 294, 949–955 (2002). (PMID: 1207456810.1016/S0006-291X(02)00574-0)
Maeda, S. et al. Development of an antibody fragment that stabilizes GPCR/G-protein complexes. Nat. Commun. 9, 3712 (2018). (PMID: 30213947613706810.1038/s41467-018-06002-w)
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). (PMID: 5494038549403810.1038/nmeth.4193)
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015). (PMID: 6760662676066210.1016/j.jsb.2015.08.008)
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, https://doi.org/10.7554/eLife.42166 (2018).
Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014). (PMID: 2421316610.1038/nmeth.2727)
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput Chem. 25, 1605–1612 (2004). (PMID: 1526425410.1002/jcc.20084)
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D. Biol. Crystallogr 60, 2126–2132 (2004). (PMID: 1557276510.1107/S0907444904019158)
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D. Biol. Crystallogr 66, 213–221 (2010). (PMID: 20124702281567010.1107/S0907444909052925)
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D. Biol. Crystallogr 53, 240–255 (1997). (PMID: 1529992610.1107/S0907444996012255)
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D. Biol. Crystallogr 67, 235–242 (2011). (PMID: 21460441306973810.1107/S0907444910045749)
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D. Biol. Crystallogr 66, 12–21 (2010). (PMID: 2005704410.1107/S0907444909042073)
The PyMoL Molecular Graphics System, Version 2.0 Schrödinger, LLC., https://www.pymol.org/2/support.html .
Research, D. E. S. Maestro-Desmond Interoperability Tools, https://www.schrodinger.com/desmond .
D. E. Shaw Research. Desmond Molecular Dynamics System, https://www.schrodinger.com/desmond (2020).
Substance Nomenclature:
0 (CCL20 protein, human)
0 (CCR6 protein, human)
0 (Chemokine CCL20)
0 (Ligands)
0 (Receptors, CCR6)
0 (Receptors, G-Protein-Coupled)
Entry Date(s):
Date Created: 20200617 Date Completed: 20200826 Latest Revision: 20210615
Update Code:
20240105
PubMed Central ID:
PMC7295996
DOI:
10.1038/s41467-020-16820-6
PMID:
32541785
Czasopismo naukowe
Chemokines are important protein-signaling molecules that regulate various immune responses by activating chemokine receptors which belong to the G protein-coupled receptor (GPCR) superfamily. Despite the substantial progression of our structural understanding of GPCR activation by small molecule and peptide agonists, the molecular mechanism of GPCR activation by protein agonists remains unclear. Here, we present a 3.3-Å cryo-electron microscopy structure of the human chemokine receptor CCR6 bound to its endogenous ligand CCL20 and an engineered Go. CCL20 binds in a shallow extracellular pocket, making limited contact with the core 7-transmembrane (TM) bundle. The structure suggests that this mode of binding induces allosterically a rearrangement of a noncanonical toggle switch and the opening of the intracellular crevice for G protein coupling. Our results demonstrate that GPCR activation by a protein agonist does not always require substantial interactions between ligand and the 7TM core region.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies