Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

CREBBP and STAT6 co-mutation and 16p13 and 1p36 loss define the t(14;18)-negative diffuse variant of follicular lymphoma.

Tytuł:
CREBBP and STAT6 co-mutation and 16p13 and 1p36 loss define the t(14;18)-negative diffuse variant of follicular lymphoma.
Autorzy:
Xian RR; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.; Pathology and Lab Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
Xie Y; Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.; Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
Haley LM; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
Yonescu R; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
Pallavajjala A; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
Pittaluga S; Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.
Jaffe ES; Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.
Duffield AS; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
McCall CM; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
Gheith SMF; Pathology and Laboratory Medicine, Lehigh Valley Health Network, Allentown, PA, USA.
Gocke CD; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA. .; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA. .
Źródło:
Blood cancer journal [Blood Cancer J] 2020 Jun 17; Vol. 10 (6), pp. 69. Date of Electronic Publication: 2020 Jun 17.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, N.I.H., Intramural
Język:
English
Imprint Name(s):
Original Publication: New York, NY : Nature Pub. Group
MeSH Terms:
CREB-Binding Protein/*genetics
Lymphoma, Follicular/*genetics
STAT6 Transcription Factor/*genetics
Adult ; Aged ; Chromosome Deletion ; Chromosomes, Human, Pair 1 ; Chromosomes, Human, Pair 16 ; Female ; Humans ; Lymphoma, Follicular/pathology ; Male ; Middle Aged ; Mutation ; Polymorphism, Single Nucleotide ; Translocation, Genetic
References:
Swerdlow S. H., et al. WHO classification of tumours of haematopoietic and lymphoid tissues: International Agency for Research on Cancer, Lyon, France 2017.
Bhagavathi, S. et al. Does a diffuse growth pattern predict for survival in patients with low-grade follicular lymphoma? Leukemia Lymphoma 50, 900–903 (2009). (PMID: 1950439410.1080/10428190902919192)
Katzenberger, T. et al. A distinctive subtype of t(14;18)-negative nodal follicular non-Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood 113, 1053–1061 (2009). (PMID: 1897820810.1182/blood-2008-07-168682)
Cheung, K. J. et al. Acquired TNFRSF14 mutations in follicular lymphoma are associated with worse prognosis. Cancer Res. 70, 9166–9174 (2010). (PMID: 2088463110.1158/0008-5472.CAN-10-2460)
Ross, C. W. et al. Comprehensive analysis of copy number and allele status identifies multiple chromosome defects underlying follicular lymphoma pathogenesis. Clin. Cancer Res. 13, 4777–4785 (2007). (PMID: 1769985510.1158/1078-0432.CCR-07-0456)
Cheung, K. J. et al. Genome-wide profiling of follicular lymphoma by array comparative genomic hybridization reveals prognostically significant DNA copy number imbalances. Blood 113, 137–148 (2009). (PMID: 1870370410.1182/blood-2008-02-140616)
Bouska, A. et al. Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood 123, 1681–1690 (2014). (PMID: 24037725395405010.1182/blood-2013-05-500595)
Cheung, K. J. et al. High resolution analysis of follicular lymphoma genomes reveals somatic recurrent sites of copy-neutral loss of heterozygosity and copy number alterations that target single genes. Genes Chromosomes Cancer 49, 669–681 (2010). (PMID: 2054484110.1002/gcc.20780)
Cheung, K. J. et al. SNP analysis of minimally evolved t(14;18)(q32;q21)-positive follicular lymphomas reveals a common copy-neutral loss of heterozygosity pattern. Cytogenet. Genome Res. 136, 38–43 (2012). (PMID: 2210407810.1159/000334265)
O’Shea, D. et al. Regions of acquired uniparental disomy at diagnosis of follicular lymphoma are associated with both overall survival and risk of transformation. Blood 113, 2298–2301 (2009). (PMID: 19141865265237310.1182/blood-2008-08-174953)
Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011). (PMID: 217961192179611910.1038/nature10351)
Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189–195 (2011). (PMID: 21390126327144110.1038/nature09730)
Green, M. R. et al. Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood 121, 1604–1611 (2013). (PMID: 23297126358732310.1182/blood-2012-09-457283)
Okosun, J. et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet. 46, 176–181 (2014). (PMID: 2436281810.1038/ng.2856)
Li, H. et al. Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma. Blood 123, 1487–1498 (2014). (PMID: 24435047472954010.1182/blood-2013-05-500264)
Pasqualucci, L. et al. Genetics of follicular lymphoma transformation. Cell Rep. 6, 130–140 (2014). (PMID: 24388756410080010.1016/j.celrep.2013.12.027)
Pastore, A. et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 16, 1111–1122 (2015). (PMID: 2625676010.1016/S1470-2045(15)00169-2)
Okosun, J. et al. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma. Nat. Genet. 48, 183–188 (2016). (PMID: 2669198710.1038/ng.3473)
Green, M. R. et al. Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. Proc. Natl. Acad. Sci. USA 112, E1116–E1125 (2015). (PMID: 2571336310.1073/pnas.1501199112)
Siddiqi, I. N. et al. Characterization of a variant of t(14;18) negative nodal diffuse follicular lymphoma with CD23 expression, 1p36/TNFRSF14 abnormalities, and STAT6 mutations. Mod. Pathol. 29, 570–581 (2016). (PMID: 2696558310.1038/modpathol.2016.51)
Zamò, A. et al. The exomic landscape of t (14; 18)‐negative diffuse follicular lymphoma with 1p36 deletion. Br. J. Haematol. 180, 391–394 (2018). (PMID: 2919301510.1111/bjh.15041)
Zheng, G. et al. The diagnostic utility of targeted gene panel sequencing in discriminating etiologies of cytopenia. Am. J. Hematol. 94, 1141–1148 (2019). (PMID: 3135079410.1002/ajh.25592)
McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP effect predictor. Bioinformatics 26, 2069–2070 (2010). (PMID: 20562413291672010.1093/bioinformatics/btq330)
Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9, 34 (2017). (PMID: 28420421539571910.1186/s13073-017-0424-2)
Schmidt, J. et al. Genome-wide analysis of pediatric-type follicular lymphoma reveals low genetic complexity and recurrent alterations of TNFRSF14 gene. Blood 128, 1101–1111 (2016). (PMID: 27257180500084510.1182/blood-2016-03-703819)
Pillonel, V. et al. High-throughput sequencing of nodal marginal zone lymphomas identifies recurrent BRAF mutations. Leukemia 32, 2412–2426 (2018). (PMID: 29556019622440510.1038/s41375-018-0082-4)
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012). (PMID: 10.1158/2159-8290.CD-12-009522588877)
Jay, J. J. & Brouwer, C. Lollipops in the clinic: information dense mutation plots for precision medicine. PLoS One. 11, e0160519 (2016). (PMID: 27490490497389510.1371/journal.pone.0160519)
Spina, V. et al. The genetics of nodal marginal zone lymphoma. Blood 128, 1362–1373 (2016). (PMID: 27335277501670610.1182/blood-2016-02-696757)
Martinez-Lopez, A. et al. MYD88 (L265P) somatic mutation in marginal zone B-cell lymphoma. Am. J. Surg. Pathol. 39, 644–651 (2015). (PMID: 2572311510.1097/PAS.0000000000000411)
van den Brand, M. et al. Recurrent mutations in genes involved in nuclear factor‐κB signalling in nodal marginal zone lymphoma—diagnostic and therapeutic implications. Histopathology 70, 174–184 (2017). (PMID: 2729787110.1111/his.13015)
Johansson, P. et al. Recurrent mutations in NF-κB pathway components, KMT2D, and NOTCH1/2 in ocular adnexal MALT-type marginal zone lymphomas. Oncotarget 7, 62627–62639 (2016). (PMID: 27566587530875210.18632/oncotarget.11548)
Jung, H. et al. The mutational landscape of ocular marginal zone lymphoma identifies frequent alterations in TNFAIP3 followed by mutations in TBL1XR1 and CREBBP. Oncotarget 8, 17038–17049 (2017). (PMID: 28152507537002010.18632/oncotarget.14928)
Kiel, M. J. et al. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J. Exp. Med. 209, 1553–1565 (2012). (PMID: 22891276342894910.1084/jem.20120910)
Martinez, N. et al. Whole-exome sequencing in splenic marginal zone lymphoma reveals mutations in genes involved in marginal zone differentiation. Leukemia 28, 1334–1340 (2014). (PMID: 2429694510.1038/leu.2013.365)
Parry, M. et al. Genetics and prognostication in splenic marginal zone lymphoma: revelations from deep sequencing. Clin. Cancer Res. 21, 4174–4183 (2015). (PMID: 25779943449018010.1158/1078-0432.CCR-14-2759)
Rossi, D. et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J. Exp. Med. 209, 1537–1551 (2012). (PMID: 22891273342894110.1084/jem.20120904)
Rinaldi, A. et al. Genome-wide DNA profiling of marginal zone lymphomas identifies subtype-specific lesions with an impact on the clinical outcome. Blood 117, 1595–1604 (2011). (PMID: 2111597910.1182/blood-2010-01-264275)
Takahashi, H. et al. Genome-wide analysis of ocular adnexal lymphoproliferative disorders using high-resolution single nucleotide polymorphism array. Invest. Ophthalmol. Vis. Sci. 56, 4156–4165 (2015). (PMID: 2612081910.1167/iovs.15-16382)
Salido, M. et al. Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the splenic B-cell lymphoma group. Blood 116, 1479–1488 (2010). (PMID: 2047928810.1182/blood-2010-02-267476)
Braggio, E. et al. Genomic analysis of marginal zone and lymphoplasmacytic lymphomas identified common and disease-specific abnormalities. Mod. Pathol. 25, 651–660 (2012). (PMID: 22301699334151610.1038/modpathol.2011.213)
Thorns, C. et al. Significant high expression of CD23 in follicular lymphoma of the inguinal region. Histopathology. 50, 716–719 (2007). (PMID: 1749323510.1111/j.1365-2559.2007.02678.x)
Olteanu, H. et al. CD23 expression in follicular lymphoma: clinicopathologic correlations. Am. J. Clin. Pathol. 135, 46–53 (2011). (PMID: 2117312310.1309/AJCP27YWLIQRAJPW)
Iqbal, J. et al. BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma. J. Clin. Oncol. 24, 961–968 (2006). (PMID: 1641849410.1200/JCO.2005.03.4264)
Correia, C. et al. BCL2 mutations are associated with increased risk of transformation and shortened survival in follicular lymphoma. Blood 125, 658–667 (2015). (PMID: 25452615430411110.1182/blood-2014-04-571786)
Catz, S. D. & Johnson, J. L. Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20, 7342–7351 (2001). (PMID: 1170486410.1038/sj.onc.1204926)
Hanada, M. et al. bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82, 1820–1828 (1993). (PMID: 810453210.1182/blood.V82.6.1820.1820)
Mottok, A. et al. Genomic alterations in CIITA are frequent in primary mediastinal large B cell lymphoma and are associated with diminished MHC class II expression. Cell Rep. 13, 1418–1431 (2015). (PMID: 2654945610.1016/j.celrep.2015.10.008)
Louissaint, A. Jr et al. Pediatric-type nodal follicular lymphoma: a biologically distinct lymphoma with frequent MAPK pathway mutations. Blood 128, 1093–1100 (2016). (PMID: 27325104500084410.1182/blood-2015-12-682591)
García-Ramírez, I. et al. Crebbp loss cooperates with Bcl2 overexpression to promote lymphoma in mice. Blood. 129, 2645–2656 (2017). (PMID: 28288979542845810.1182/blood-2016-08-733469)
Tiacci, E. et al. Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood 131, 2454–2465 (2018). (PMID: 29650799663495810.1182/blood-2017-11-814913)
Ritz, O., Guiter, C. & Castellano, F. et al. Recurrent mutations of the STAT6 DNAbinding domain in primary mediastinal B-cell lymphoma. Blood 114, 1236–1242 (2009). (PMID: 19423726282465610.1182/blood-2009-03-209759)
Morin, R. D. et al. Genetic landscapes of relapsed and refractory diffuse large B-cell lymphomas. Clin. Cancer Res. 22, 2290–2300 (2016). (PMID: 2664721810.1158/1078-0432.CCR-15-2123)
Yildiz, M. et al. Activating STAT6 mutations in follicular lymphoma. Blood 125, 668–679 (2015). (PMID: 25428220472953810.1182/blood-2014-06-582650)
Wurster, A. L. et al. Interleukin-4-mediated protection of primary B cells from apoptosis through Stat6-dependent up-regulation of Bcl-xL. J. Biol. Chem. 277, 27169–27175 (2002). (PMID: 1202395510.1074/jbc.M201207200)
Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899 (2010). (PMID: 20164920282670910.1038/nature08822)
Ritz, O. et al. STAT6 activity is regulated by SOCS-1 and modulates BCL-XL expression in primary mediastinal B-cell lymphoma. Leukemia 22, 2106 (2008). (PMID: 1840141510.1038/leu.2008.85)
Grant Information:
P30 CA006973 United States CA NCI NIH HHS
Substance Nomenclature:
0 (STAT6 Transcription Factor)
0 (STAT6 protein, human)
EC 2.3.1.48 (CREB-Binding Protein)
EC 2.3.1.48 (CREBBP protein, human)
Entry Date(s):
Date Created: 20200620 Date Completed: 20210510 Latest Revision: 20210617
Update Code:
20240105
PubMed Central ID:
PMC7299932
DOI:
10.1038/s41408-020-0335-0
PMID:
32555149
Czasopismo naukowe
The diffuse variant of follicular lymphoma (dFL) is a rare variant of FL lacking t(14;18) that was first described in 2009. In this study, we use a comprehensive approach to define unifying pathologic and genetic features through gold-standard pathologic review, FISH, SNP-microarray, and next-generation sequencing of 16 cases of dFL. We found unique morphologic features, including interstitial sclerosis, microfollicle formation, and rounded nuclear cytology, confirmed absence of t(14;18) and recurrent deletion of 1p36, and showed a novel association with deletion/CN-LOH of 16p13 (inclusive of CREBBP, CIITA, and SOCS1). Mutational profiling demonstrated near-uniform mutations in CREBBP and STAT6, with clonal dominance of CREBBP, among other mutations typical of germinal-center B-cell lymphomas. Frequent CREBBP and CIITA codeletion/mutation suggested a mechanism for immune evasion, while subclonal STAT6 activating mutations with concurrent SOCS1 loss suggested a mechanism of BCL-xL/BCL2L1 upregulation in the absence of BCL2 rearrangements. A review of the literature showed significant enrichment for 16p13 and 1p36 loss/CN-LOH, STAT6 mutation, and CREBBP and STAT6 comutation in dFL, as compared with conventional FL. With this comprehensive approach, our study demonstrates confirmatory and novel genetic associations that can aid in the diagnosis and subclassification of this rare type of lymphoma.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies