Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Inside-tube solid-phase microextraction as an interlink between solid-phase microextraction and needle device for n-hexane evaluation in air and urine headspace.

Tytuł:
Inside-tube solid-phase microextraction as an interlink between solid-phase microextraction and needle device for n-hexane evaluation in air and urine headspace.
Autorzy:
Ghafari J; Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Vahabi M; Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Dehghan SF; Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Zendehdel R; Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Źródło:
Biomedical chromatography : BMC [Biomed Chromatogr] 2020 Oct; Vol. 34 (10), pp. e4924. Date of Electronic Publication: 2020 Jul 12.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1990- : Chichester : Wiley
Original Publication: London : Heyden & Son, c1986-1990
MeSH Terms:
Hexanes*/analysis
Hexanes*/isolation & purification
Hexanes*/urine
Air/*analysis
Solid Phase Microextraction/*instrumentation
Solid Phase Microextraction/*methods
Environmental Exposure ; Equipment Design ; Humans ; Limit of Detection ; Linear Models ; Reproducibility of Results
References:
Arthur, C. L., & Pawliszyn, J. (1990). Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry, 62(19), 2145-2148. https://doi.org/10.1021/ac00218a019.
Attarchi, M. S., Labbafinejad, Y., & Mohammadi, S. (2010). Occupational exposure to different levels of mixed organic solvents and colour vision impairment. Neurotoxicology and Teratology, 32(5), 558-562. https://doi.org/10.1016/j.ntt.2010.05.003.
Baker, E. L. (1994). A review of recent research on health effects of human occupational exposure to organic solvents. A critical review. Journal of Occupational Medicine, 36(10), 1079-1092.
Baktash, M. Y., & Bagheri, H. (2017). Silica aerogel coated on metallic wire by phase separation of polystyrene for in-tube solid phase microextraction. Journal of Chromatography A, 1500, 69-75. https://doi.org/10.1016/j.chroma.2017.04.011.
Barba, C., Thomas-Danguin, T., & Guichard, E. (2017). Comparison of stir bar sorptive extraction in the liquid and vapour phases, solvent-assisted flavour evaporation and headspace solid-phase microextraction for the (non)-targeted analysis of volatiles in fruit juice. LWT-Food Science and Technology, 85, 334-344. https://doi.org/10.1016/j.lwt.2016.09.015.
Bianchi, F., Careri, M., Musci, M., & Mangia, A. (2007). Fish and food safety: Determination of formaldehyde in 12 fish species by SPME extraction and GC-MS analysis. Food Chemistry, 100(3), 1049-1053. https://doi.org/10.1016/j.foodchem.2005.09.089.
Camarasu, C. C., Mezei-Szűts, M., & Varga, G. B. (1998). Residual solvents determination in pharmaceutical products by GC-HS and GC-MS-SPME. Journal of Pharmaceutical and Biomedical Analysis, 18(4-5), 623-638. https://doi.org/10.1016/S0731-7085(98)00276-3.
Fan, Z., Liu, W., Wei, Z., Yao, J., Sun, X., Li, M., & Wang, X. (2011). Fabrication of two biomimetic superhydrophobic polymeric surfaces. Applied Surface Science, 257(9), 4296-4301. https://doi.org/10.1016/j.apsusc.2010.12.039.
Feng, J., Sun, M., Li, J., Liu, X., & Jiang, S. (2012). A novel aromatically functional polymeric ionic liquid as sorbent material for solid-phase microextraction. Journal of Chromatography A, 1227, 54-59. https://doi.org/10.1016/j.chroma.2012.01.010.
Feng, J., Wang, X., Tian, Y., Luo, C., & Sun, M. (2018). Melamine-formaldehyde aerogel coating for in-tube solid-phase microextraction. Journal of Chromatography A, 1577, 8-14. https://doi.org/10.1016/j.chroma.2018.09.047.
Ghaemmaghami, M., Yamini, Y., Amanzadeh, H., & Monjezi, B. H. (2018). Electrophoretic deposition of ordered mesoporous carbon nitride on a stainless steel wire as a high-performance solid phase microextraction coating. Chemical Communications, 54(5), 507-510. https://doi.org/10.1039/C7CC08273H.
Grafit, A., Muller, D., Kimchi, S., & Avissar, Y. Y. (2018). Development of a Solid-phase microextraction (SPME) Fiber protector and its application in flammable liquid residues analysis. Forensic Science International, 292, 138-147. https://doi.org/10.1016/j.forsciint.2018.09.004.
Hady, H. M. E., Metwally, F., Gendy, M. F. E., Elserougy, S., & Helmy, M. A. (2014). Serum bile acid as a screening tool in workers occupationally exposed to mixtures of organic solvents. Toxicology and Industrial Health, 30(7), 645-652. https://doi.org/10.1177/0748233712462469.
Huppert, N., Würtele, M., & Hahn, H. H. (1998). Determination of the plasticizer N-butylbenzenesulfonamide and the pharmaceutical Ibuprofen in wastewater using solid phase microextraction (SPME). Fresenius' Journal of Analytical Chemistry, 362(6), 529-536. https://doi.org/10.1007/s002160051119.
Imbrogno, J., Rogers, L., Thomas, D. A., & Jensen, K. F. (2018). Continuous purification of active pharmaceutical ingredients utilizing polymer membrane surface wettability. Chemical Communications, 54(1), 70-73. https://doi.org/10.1039/C7CC08218E.
Jalili, V., Zendehdel, R., Bahramian, A., & Barkhordari, A. (2019). Application of Needle Trap Device Based on the Carbon Aerogel for Trace Analysis of n-Hexane in Air Samples. Chromatographia, 82(10), 1-7.
Kataoka, H., Lord, H. L., & Pawliszyn, J. (2000). Applications of solid-phase microextraction in food analysis. Journal of Chromatography A, 880(1-2), 35-62. https://doi.org/10.1016/S0021-9673(00)00309-5.
Koziel, J. A., Nguyen, L. T., Glanville, T. D., Ahn, H., Frana, T. S., & van Leeuwen, J. H. (2017). Method for sampling and analysis of volatile biomarkers in process gas from aerobic digestion of poultry carcasses using time-weighted average SPME and GC-MS. Food Chemistry, 232, 799-807. https://doi.org/10.1016/j.foodchem.2017.04.062.
Kutlu, G., Gomceli, Y. B., Sonmez, T., & Inan, L. E. (2009). Peripheral neuropathy and visual evoked potential changes in workers exposed to n-hexane. Journal of Clinical Neuroscience, 16(10), 1296-1299. https://doi.org/10.1016/j.jocn.2008.12.021.
Lan, H., Gan, N., Pan, D., Hu, F., Li, T., Long, N., … Feng, Y. (2014). Development of a novel magnetic molecularly imprinted polymer coating using porous zeolite imidazolate framework-8 coated magnetic iron oxide as carrier for automated solid phase microextraction of estrogens in fish and pork samples. Journal of Chromatography a, 1365, 35-44. https://doi.org/10.1016/j.chroma.2014.08.096.
Larroque, V., Desauziers, V., & Mocho, P. (2006). Development of a solid phase microextraction (SPME) method for the sampling of VOC traces in indoor air. Journal of Environmental Monitoring, 8(1), 106-111. https://doi.org/10.1039/B511201J.
Maleki, H., & Hüsing, N. (2018). Aerogels as promising materials for environmental remediation-A broad insight into the environmental pollutants removal through adsorption and (photo) catalytic processes. New polymer nanocomposites for environmental remediation (pp. 389-436), Austria: Elsevier.
Menezes Filho, A., dos Santos, F. N., & de Paula Pereira, P. A. (2010). Development, validation and application of a methodology based on solid-phase micro extraction followed by gas chromatography coupled to mass spectrometry (SPME/GC-MS) for the determination of pesticide residues in mangoes. Talanta, 81(1-2), 346-354. https://doi.org/10.1016/j.talanta.2009.12.008.
Menezes Filho, A., dos Santos, F. N., & Pereira, P. A. (2010). Development, validation and application of a method based on DI-SPME and GC-MS for determination of pesticides of different chemical groups in surface and groundwater samples. Microchemical Journal, 96(1), 139-145. https://doi.org/10.1016/j.microc.2010.02.018.
Miller, F. S., & Andresen, B. D. (2006). Method for preparing a solid phase microextraction device using aerogel. In: Google Patents.
Mitra, S. (2004). Sample preparation techniques in analytical chemistry (Vol. 237), USA: John Wiley & Sons.
Naseri, I., Kazemi, A., Bahramian, A. R., & Kashani, M. R. (2014). Preparation of organic and carbon xerogels using high-temperature-pressure sol-gel polymerization. Materials & Design, 61, 35-40. https://doi.org/10.1016/j.matdes.2014.04.061.
Pekala, R., Farmer, J., Alviso, C., Tran, T., Mayer, S., Miller, J., & Dunn, B. (1998). Carbon aerogels for electrochemical applications. Journal of Non-Crystalline Solids, 225, 74-80. https://doi.org/10.1016/S0022-3093(98)00011-8.
Pena-Pereira, F., Lavilla, I., & Bendicho, C. (2010). Liquid-phase microextraction techniques within the framework of green chemistry. TrAC Trends in Analytical Chemistry, 29(7), 617-628. https://doi.org/10.1016/j.trac.2010.02.016.
Periago, J. F., Cardona, A., Marhuenda, D., Roel, J., Villanueva, M., Marti, J., & Luna, A. (1993). Biological monitoring of occupational exposure to n-hexane by exhaled air analysis and urinalysis. International Archives of Occupational and Environmental Health, 65(4), 275-278. https://doi.org/10.1007/BF00381203.
Puri, V., Gupta, A. D., Chaudhry, N., & Saran, R. K. (2015). Reversible cerebral and brain stem dysfunction in n: Hexane neuropathy. Annals of Indian Academy of Neurology, 18(4), 464-467. https://doi.org/10.4103/0972-2327.160088.
Shan, C., Wang, L., Li, Z., Zhong, X., Hou, Y., Zhang, L., & Shi, F. (2019). Graphene oxide enhanced polyacrylamide-alginate aerogels catalysts. Carbohydrate Polymers, 203, 19-25. https://doi.org/10.1016/j.carbpol.2018.09.024.
Szczurek, A., Fierro, V., Medjahdi, G., & Celzard, A. (2019). Carbon aerogels prepared by autocondensation of flavonoid tannin. Carbon Resources Conversion, 2(1), 72-84. https://doi.org/10.1016/j.crcon.2019.02.001.
Tamon, H., Ishizaka, H., Mikami, M., & Okazaki, M. (1997). Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon, 35(6), 791-796. https://doi.org/10.1016/S0008-6223(97)00024-9.
Tian, Y., Feng, J., Wang, X., Luo, C., & Sun, M. (2019). Ionic liquid-functionalized silica aerogel as coating for solid-phase microextraction. Journal of Chromatography a, 1583, 48-54. https://doi.org/10.1016/j.chroma.2018.11.018.
Tobiszewski, M., Mechlińska, A., Zygmunt, B., & Namieśnik, J. (2009). Green analytical chemistry in sample preparation for determination of trace organic pollutants. TrAC Trends in Analytical Chemistry, 28(8), 943-951. https://doi.org/10.1016/j.trac.2009.06.001.
Tobiszewski, M., & Namieśnik, J. (2012). Direct chromatographic methods in the context of green analytical chemistry. TrAC Trends in Analytical Chemistry, 35, 67-73. https://doi.org/10.1016/j.trac.2012.02.006.
Van de Witte, P., Dijkstra, P. J., Van den Berg, J., & Feijen, J. (1996). Phase separation processes in polymer solutions in relation to membrane formation. Journal of Membrane Science, 117(1-2), 1-31. https://doi.org/10.1016/0376-7388(96)00088-9.
Wang, M., Anoshkin, I. V., Nasibulin, A. G., Korhonen, J. T., Seitsonen, J., Pere, J., … Ikkala, O. (2013). Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing. Advanced Materials, 25(17), 2428-2432. https://doi.org/10.1002/adma.201300256.
Wang, X., Feng, J., Tian, Y., Li, C., Ji, X., Luo, C., & Sun, M. (2019). Melamine-formaldehyde aerogel functionalized with polydopamine as in-tube solid-phase microextraction coating for the determination of phthalate esters. Talanta, 199, 317-323. https://doi.org/10.1016/j.talanta.2019.02.081.
Zhang, H., & Lee, H. K. (2011). Plunger-in-needle solid-phase microextraction with graphene-based sol-gel coating as sorbent for determination of polybrominated diphenyl ethers. Journal of Chromatography a, 1218(28), 4509-4516. https://doi.org/10.1016/j.chroma.2011.05.016.
Zhang, Z., Yang, M. J., & Pawliszyn, J. (1994). Solid-phase microextraction. A solvent-free alternative for sample preparation. Analytical Chemistry, 66(17), 844A-853A. https://doi.org/10.1021/ac00089a001.
Contributed Indexing:
Keywords: carbon aerogel; gas composition; inside-tube SPME; n-hexane; separation phase
Substance Nomenclature:
0 (Hexanes)
2DDG612ED8 (n-hexane)
Entry Date(s):
Date Created: 20200620 Date Completed: 20210426 Latest Revision: 20210426
Update Code:
20240105
DOI:
10.1002/bmc.4924
PMID:
32559819
Czasopismo naukowe
Monitoring the trace amount of chemicals in various samples remains a challenge. This study was conducted to develop a new solid-phase microextraction (SPME) system (inside-tube SPME) for trace analysis of n-hexane in air and urine matrix. The inside-tube SPME system was prepared based on the phase separation technique. A mixture of carbon aerogel and polystyrene was loaded inside the needle using methanol as the anti-solvent. The air matrix of n-hexane was prepared in a Tedlar bag, and n-hexane vapor was sampled at a flow rate of 0.1 L/min. Urine samples spiked with n-hexane were used to simulate the sampling method. The limit of detection using the inside-tube SPME was 0.0003 μg/sample with 2.5 mg of adsorbent, whereas that using the packed needle was 0.004 μg/sample with 5 mg of carbon aerogel. For n-hexane analysis, the day-to-day and within-day coefficient variation were lower than 1.37%, with recoveries over 98.41% achieved. The inside-tube SPME is an inter-link device between two sample preparation methods, namely, a needle trap device and an SPME system. The result of this study suggested the use of the inside-tube SPME containing carbon aerogel (adsorbent) as a simple and fast method with low cost for n-hexane evaluation.
(© 2020 John Wiley & Sons, Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies