Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The use of photobiomodulation therapy or LED and mineral trioxide aggregate improves the repair of complete tibial fractures treated with wire osteosynthesis in rodents.

Tytuł:
The use of photobiomodulation therapy or LED and mineral trioxide aggregate improves the repair of complete tibial fractures treated with wire osteosynthesis in rodents.
Autorzy:
Pinheiro ALB; Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA, 40110-150, Brazil. .; National Institute of Basic Optics and Applied to Life Sciences, Physics Institute of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400, Parque Arnold Schimidt, Sao Carlos, SP, 13566-590, Brazil. .; Biomedical Engineering Institute, Universidade Brasil, Sao Paulo, SP, 08230-030, Brazil. .
Soares LGP; Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA, 40110-150, Brazil.; National Institute of Basic Optics and Applied to Life Sciences, Physics Institute of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400, Parque Arnold Schimidt, Sao Carlos, SP, 13566-590, Brazil.; Department of Biointeraction, Institute of Health Science, Federal University of Bahia, Reitor Miguel Calmon Ave, S/N, Salvador, BA, 40110-100, Brazil.
da Silva ACP; Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA, 40110-150, Brazil.
Santos NRS; Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA, 40110-150, Brazil.
da Silva APLT; Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA, 40110-150, Brazil.
Neves BLRC; Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA, 40110-150, Brazil.
Soares AP; Center of Biophotonics, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA, 40110-150, Brazil.
Gerbi MEMM; Faculty of Dentistry, Pernambuco State University, Av. Gal. Newton Cavalcanti, 1650 - Tabatinga, Camaragibe, PE, 54756-220, Brazil.
Dos Santos JN; Laboratory of Surgical Pathology, School of Dentistry, Federal University of Bahia - UFBA, Av. Araújo Pinho, 62, Canela, Salvador, BA, 40110-150, Brazil.
Źródło:
Lasers in medical science [Lasers Med Sci] 2021 Jun; Vol. 36 (4), pp. 735-742. Date of Electronic Publication: 2020 Jun 24.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: London : Springer
Original Publication: London : Baillière Tindall, c1986-
MeSH Terms:
Bone Wires*
Low-Level Light Therapy*
Aluminum Compounds/*pharmacology
Calcium Compounds/*pharmacology
Oxides/*pharmacology
Silicates/*pharmacology
Tibial Fractures/*radiotherapy
Tibial Fractures/*surgery
Aluminum Compounds/therapeutic use ; Animals ; Calcium Compounds/therapeutic use ; Drug Combinations ; Oxides/therapeutic use ; Rodentia ; Silicates/therapeutic use
References:
Brannigan K, Griffin M (2016) An update into the application of nanotechnology in bone healing. Open Orthop J 30:808–823. https://doi.org/10.2174/1874325001610010808. (PMID: 10.2174/1874325001610010808)
Broaddus WC, Holloway KL, Winters CJ, Bullock MR, Graham RS, Mathern ME, Ward JD, Young HF (2002) Titanium miniplates or stainless-steel wire for cranial fixation: a prospective randomized comparison. J Neurosurg 96:244–247. https://doi.org/10.3171/jns.2002.96.2.0244. (PMID: 10.3171/jns.2002.96.2.024411838797)
Preciou DS, Cardoso AB, Cardoso MC, Doucet JC (2014) Cost comparison of genioplasty: when indicated, wire osteosynthesis is more cost effective than plate and screw fixation. J Oral Maxillofac Surg 18:439–444. https://doi.org/10.1007/s10006-013-0437-y. (PMID: 10.1007/s10006-013-0437-y)
Motamedian SR, Khojaste M, Khojasteh A (2016) Success rate of implants placed in autogenous bone blocks versus allogenic bone blocks: a systematic literature review. Ann Maxillofac Surg 6:78–90. https://doi.org/10.4103/2231-0746.186143. (PMID: 10.4103/2231-0746.186143275636134979349)
Torabinejad M, Parirokh M (2010) Mineral trioxide aggregate: a comprehensive literature review- part II: leakage and biocompatibility investigations. J Endod 36:190–202. https://doi.org/10.1016/j.joen.2009.09.010. (PMID: 10.1016/j.joen.2009.09.01020113774)
Pinheiro ALB, Soares LGP, Barbosa AFS, Ramalho LMP, dos Santos JN (2012) Does LED phototherapy influence the repair of bone fractured sites grafted with MTA, bone morphogenetic proteins, and guided bone regeneration? A description of the repair process on rodents. Lasers Med Sci 27:1013–1024. https://doi.org/10.1007/s10103-011-1033-8. (PMID: 10.1007/s10103-011-1033-822170161)
Torabinejad M, Moazami M, Moaddel H, Hawkins J, Gustefson C et al (2017) Effect of MTA particle size on periapical healing. Int Endod J 50(Suppl 2):e3–e8. https://doi.org/10.1111/iej.12738. (PMID: 10.1111/iej.1273827977855)
Gandolfi MG, Iezzi G, Piattelli A, Prati C, Scarano A (2017) Osteoinductive potential and bone-bonding ability of ProRoot MTA, MTA plus and biodentine in rabbit intramedullary model: microchemical characterization and histological analysis. Dent Mater 33:e221–e238. https://doi.org/10.1016/j.dental.2017.01.017. (PMID: 10.1016/j.dental.2017.01.01728233601)
Mandić B, Lazić Z, Marković A, Mandić B et al (2015) Influence of postoperative low-level laser therapy on the osseointegration of self-tapping implants in the posterior maxilla: a 6-week split-mouth clinical study. Vojnosanit Pregl 72:233–240. https://doi.org/10.2298/VSP131202075M. (PMID: 10.2298/VSP131202075M25958474)
Flieger R, Gedrange T, Grzech-Leśniak K, Dominiak M, Matys J (2020) Low-level laser therapy with a 635 nm diode laser affects orthodontic mini-implants stability: a randomized clinical Split-mouth trial. J Clin Med 9:112. https://doi.org/10.3390/jcm9010112. (PMID: 10.3390/jcm9010112)
Matys J, Świder K, Grzech-Leśniak K, Dominiak M, Romeo U (2019, Article ID 2785302) Photobiomodulation by a 635nm diode laser on peri-implant bone: primary and secondary stability and bone density analysis—a randomized clinical trial. Biomed Res Int. https://doi.org/10.1155/2019/2785302.
Weber JB, Pinheiro ALB, de Oliveira MG, Oliveira FA, Ramalho LM (2006) Laser therapy improves healing of bone defects submitted to autologous bone graft. Photomed Laser Surg 24:38–44. https://doi.org/10.1089/pho.2006.24.38. (PMID: 10.1089/pho.2006.24.3816503787)
Pinheiro ALB, Soares LGP, Marques AM, Cangussú MC, Pacheco MT, Silveira L Jr (2017) Biochemical changes on the repair of surgical bone defects grafted with biphasic synthetic micro-granular HA + β-tricalcium phosphate induced by laser and LED phototherapies and assessed by Raman spectroscopy. Lasers Med Sci 32:663–672. https://doi.org/10.1007/s10103-017-2165-2. (PMID: 10.1007/s10103-017-2165-228188497)
Soares DM, Barros AAA, Assis AO, Lyra S, Figueira E, Dantas EM et al (2014) Effect of laser therapy combined with biomaterials for treatment of periodontal bone defects. Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral 7:25–28. (PMID: 10.4067/S0719-01072014000100006)
Pinheiro ALB, Santos NRS, Oliveira PC, Aciole GT, Ramos TA, Gonzalez TA, Silva LN, Barbosa AF, Silveira L (2013) The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with wire osteosynthesis: a comparative laser fluorescence and Raman spectral study on rabbits. Lasers Med Sci 28:815–822. https://doi.org/10.1007/s10103-012-1166-4. (PMID: 10.1007/s10103-012-1166-422833288)
Lopes CB, Pacheco MTT, Silveira L, Cangussú MCT, Pinheiro ALB (2010) The effect of the association of near infrared laser therapy, bone morphogenetic proteins, and guided bone regeneration on tibial fractures treated with internal rigid fixation: a Raman spectroscopic study. J Biomed Mater Res A 94:1257–1263. https://doi.org/10.1002/jbm.a.32800. (PMID: 10.1002/jbm.a.3280020694993)
Pinheiro ALB, Lopes CB, Pacheco MTT, Brugnera A, Zanin FA, Cangussú MC, Silveira L (2010) Raman spectroscopy validation of DIAGNOdent-assisted fluorescence readings on tibial fractures treated with laser phototherapy, BMPs, guided bone regeneration, and miniplates. Photomed Laser Surg 28:S89–S97. https://doi.org/10.1089/pho.2009.2674. (PMID: 10.1089/pho.2009.267420929388)
Lopes CB, Pacheco MTT, Silveira L, Duarte J, Cangussú MC, Pinheiro ALB (2007) The effect of the association of NIR laser therapy BMPs, and guided bone regeneration on tibial fractures treated with wire osteosynthesis: Raman spectroscopy study. J Photochem Photobiol B 89:125–130. https://doi.org/10.1016/j.jphotobiol.2007.09.011. (PMID: 10.1016/j.jphotobiol.2007.09.01117981047)
Pinheiro ALB, Soares LGP, Silva ACP et al (2018) Laser/LED phototherapy on the repair of tibial fracture treated with wire osteosynthesis evaluated by Raman spectroscopy. Lasers Med Sci 33:1657–1666. https://doi.org/10.1007/s10103-018-2508-7. (PMID: 10.1007/s10103-018-2508-729687410)
Bystrom A, Claesson R, Sundqvist G (1995) The antibacterial effect of camphorated paramonochlorophenol, camphorated phenol and calcium hydroxide in the treatment of infected root canals. Endod Dent Traumatol 5:170–175. https://doi.org/10.1111/j.1600-9657.1985.tb00652.x. (PMID: 10.1111/j.1600-9657.1985.tb00652.x)
Mitchell PJ, Pitt Ford TR, Torabinejad M, McDonald F (1999) Osteoblast biocompatibility of mineral trioxide aggregate. Biomaterials 20:167–173. https://doi.org/10.1016/S0142-9612(98)00157-4. (PMID: 10.1016/S0142-9612(98)00157-410022786)
Pinheiro ALB, Gerbi MEMM (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24:169–178. https://doi.org/10.1089/pho.2006.24.169. (PMID: 10.1089/pho.2006.24.16916706695)
Garcia LDFR, Huck C, Scardueli CR, Souza Costa CA (2015) Repair of bone defects filled with new calcium aluminate cement (EndoBinder). J Endod 41:864–870. https://doi.org/10.1002/jbm.a.33107. (PMID: 10.1002/jbm.a.33107)
Pinheiro ALB, Soares LGP, Aciole GTS, Correia NA, Barbosa AFS, Ramalho LMP, Santos JN (2011) Light microscopic description of the effects of laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration in a rodent model. J Biomed Mater Res A 98:212–221. https://doi.org/10.1002/jbm.a.33107. (PMID: 10.1002/jbm.a.3310721548072)
Grant Information:
301402/2010-8 Conselho Nacional de Desenvolvimento Científico e Tecnológico
Contributed Indexing:
Keywords: Biomaterial; Bone defect; Histomorphometry; Light microscopy; Phototherapy
Substance Nomenclature:
0 (Aluminum Compounds)
0 (Calcium Compounds)
0 (Drug Combinations)
0 (Oxides)
0 (Silicates)
0 (mineral trioxide aggregate)
Entry Date(s):
Date Created: 20200626 Date Completed: 20210527 Latest Revision: 20210527
Update Code:
20240105
DOI:
10.1007/s10103-020-03074-3
PMID:
32583187
Czasopismo naukowe
The repair of large bone defects is lengthy and complex. Both biomaterials and phototherapy have been used to improve bone repair. We aimed to describe histologically the repair of tibial fractures treated by wiring (W), irradiated or not, with laser (λ780 nm, 70 mW, CW, spot area of 0.5 cm 2 , 20.4 J/cm 2 (4 × 5.1 J/cm 2 , Twin Flex Evolution®, MM Optics, Sao Carlos, SP, Brazil) per session, 300 s, 142.8 J/cm 2 per treatment) or LED (λ850 ± 10 nm, 150 mW, spot area of 0.5 cm 2 , 20.4 J/cm 2 per session, 64 s, 142.8 J/cm 2 per treatment, Fisioled® , MM Optics, Sao Carlos, Sao Paulo, Brazil) and associated or not to the use of mineral trioxide aggregate (MTA, Angelus®, Londrina, PR, Brazil). Inflammation was discrete on groups W and W + LEDPT and absent on the others. Phototherapy protocols started immediately before suturing and repeated at every other day for 15 days. Collagen deposition intense on groups W + LEDPT, W + BIO-MTA + LaserPT and W + BIO-MTA + LEDPT and discrete or moderate on the other groups. Reabsorption was discrete on groups W and W + LEDPT and absent on the other groups. Neoformation varied greatly between groups. Most groups were partial and moderately filed with new-formed bone (W, W + LaserPT, W + LEDPT, W + BIO-MTA + LEDPT). On groups W + BIO-MTA and W + BIO-MTA + LaserPT bone, neoformation was intense and complete. Our results are indicative that the association of MTA and PBMT (λ = 780 nm) improves the repair of complete tibial fracture treated with wire osteosynthesis in a rodent model more efficiently than LED (λ = 850 ± 10 nm).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies