Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Muscle from aged rats is resistant to mechanotherapy during atrophy and reloading.

Tytuł:
Muscle from aged rats is resistant to mechanotherapy during atrophy and reloading.
Autorzy:
Lawrence MM; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
Van Pelt DW; Department of Physical Therapy, University of Kentucky, Lexington, KY, 40536, USA.; Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA.
Confides AL; Department of Physical Therapy, University of Kentucky, Lexington, KY, 40536, USA.; Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA.
Hettinger ZR; Department of Physical Therapy, University of Kentucky, Lexington, KY, 40536, USA.; Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA.
Hunt ER; Department of Physical Therapy, University of Kentucky, Lexington, KY, 40536, USA.; Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA.
Reid JJ; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
Laurin JL; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
Peelor FF 3rd; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
Butterfield TA; Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA.; Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, 40536, USA.
Miller BF; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
Dupont-Versteegden EE; Department of Physical Therapy, University of Kentucky, Lexington, KY, 40536, USA. .; Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA. .; College of Health Sciences, University of Kentucky, 900 S. Limestone CTW210E, Lexington, KY, 40536-0200, USA. .
Źródło:
GeroScience [Geroscience] 2021 Feb; Vol. 43 (1), pp. 65-83. Date of Electronic Publication: 2020 Jun 25.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Original Publication: Cham : Springer International Publishing, [2017]-
MeSH Terms:
Hindlimb Suspension*
Muscular Atrophy*/pathology
Muscular Atrophy*/prevention & control
Animals ; Male ; Muscle, Skeletal/pathology ; Rats ; Rats, Inbred BN ; Rats, Inbred F344
References:
Alnaqeeb MA, Al Zaid NS, Goldspink G. Connective tissue changes and physical properties of developing and ageing skeletal muscle. J Anat. 1984;139(Pt 4):677–89. (PMID: 65267191164979)
Andrushko JW, Gould LA, Farthing JP. Contralateral effects of unilateral training: sparing of muscle strength and size after immobilization. Appl Physiol Nutr Metab. 2018a;43:1131–9. https://doi.org/10.1139/apnm-2018-0073 . (PMID: 10.1139/apnm-2018-007329800529)
Andrushko JW, Lanovaz JL, Bjorkman KM, Kontulainen SA, Farthing JP. Unilateral strength training leads to muscle-specific sparing effects during opposite homologous limb immobilization. J Appl Physiol. 2018b;124:866–76. https://doi.org/10.1152/japplphysiol.00971.2017 . (PMID: 10.1152/japplphysiol.00971.201729357520)
Baehr LM, Tunzi M, Bodine SC. Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression. Front Physiol. 2014;5:69. https://doi.org/10.3389/fphys.2014.00069 . (PMID: 10.3389/fphys.2014.00069246004083930915)
Barclay RD, Burd NA, Tyler C, Tillin NA, Mackenzie RW. The role of the IGF-1 signaling cascade in muscle protein synthesis and anabolic resistance in aging skeletal muscle. Front Nutr. 2019;6:146. https://doi.org/10.3389/fnut.2019.00146 . (PMID: 10.3389/fnut.2019.00146315522626746962)
Bederman IR, Lai N, Shuster J, Henderson L, Ewart S, Cabrera ME. Chronic hindlimb suspension unloading markedly decreases turnover rates of skeletal and cardiac muscle proteins and adipose tissue triglycerides. J Appl Physiol. 2015;119:16–26. https://doi.org/10.1152/japplphysiol.00004.2014 . (PMID: 10.1152/japplphysiol.00004.201425930021)
Bickel CS, Cross JM, Bamman MM. Exercise dosing to retain resistance training adaptations in young and older adults. Med Sci Sports Exerc. 2011;43:1177–87. https://doi.org/10.1249/MSS.0b013e318207c15d . (PMID: 10.1249/MSS.0b013e318207c15d21131862)
Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704–8. https://doi.org/10.1126/science.1065874 . (PMID: 10.1126/science.1065874)
Bolster DR, Kubica N, Crozier SJ, Williamson DL, Farrell PA, Kimball SR, et al. Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle. J Physiol. 2003;553:213–20. https://doi.org/10.1113/jphysiol.2003.047019 . (PMID: 10.1113/jphysiol.2003.047019129372932343483)
Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007;317:807–10. https://doi.org/10.1126/science.1144090 . (PMID: 10.1126/science.114409017690295)
Burd NA, Gorissen SH, van Loon LJ. Anabolic resistance of muscle protein synthesis with aging. Exerc Sport Sci Rev. 2013;41:169–73. https://doi.org/10.1097/JES.0b013e318292f3d5 . (PMID: 10.1097/JES.0b013e318292f3d523558692)
Busch R, Kim YK, Neese RA, Schade-Serin V, Collins M, Awada M, et al. Measurement of protein turnover rates by heavy water labeling of nonessential amino acids. Biochim Biophys Acta. 2006;1760:730–44. https://doi.org/10.1016/j.bbagen.2005.12.023 . (PMID: 10.1016/j.bbagen.2005.12.02316567052)
Butterfield TA, Zhao Y, Agarwal S, Haq F, Best TM. Cyclic compressive loading facilitates recovery after eccentric exercise. Med Sci Sports Exerc. 2008;40:1289–96. https://doi.org/10.1249/MSS.0b013e31816c4e12 . (PMID: 10.1249/MSS.0b013e31816c4e12185804104948996)
Carroll TJ, Herbert RD, Munn J, Lee M, Gandevia SC. Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol. 2006;101:1514–22. https://doi.org/10.1152/japplphysiol.00531.2006 . (PMID: 10.1152/japplphysiol.00531.200617043329)
Covinsky KE, Palmer RM, Fortinsky RH, Counsell SR, Stewart AL, Kresevic D, et al. Loss of independence in activities of daily living in older adults hospitalized with medical illnesses: increased vulnerability with age. J Am Geriatr Soc. 2003;51:451–8. (PMID: 10.1046/j.1532-5415.2003.51152.x)
Cuthbertson DJ, Babraj J, Smith K, Wilkes E, Fedele MJ, Esser K, et al. Anabolic signaling and protein synthesis in human skeletal muscle after dynamic shortening or lengthening exercise. Am J Physiol Endocrinol Metab. 2006;290:E731–8. https://doi.org/10.1152/ajpendo.00415.2005 . (PMID: 10.1152/ajpendo.00415.200516263770)
Drake JC, Peelor FF 3rd, Biela LM, Watkins MK, Miller RA, Hamilton KL, et al. Assessment of mitochondrial biogenesis and mTORC1 signaling during chronic rapamycin feeding in male and female mice. J Gerontol A Biol Sci Med Sci. 2013;68:1493–501. https://doi.org/10.1093/gerona/glt047 . (PMID: 10.1093/gerona/glt047236579753814233)
Drake JC, Bruns DR, Peelor FF 3rd, Biela LM, Miller RA, Hamilton KL, et al. Long-lived crowded-litter mice have an age-dependent increase in protein synthesis to DNA synthesis ratio and mTORC1 substrate phosphorylation. Am J Physiol Endocrinol Metab. 2014;307:E813–21. https://doi.org/10.1152/ajpendo.00256.2014 . (PMID: 10.1152/ajpendo.00256.2014252058194216950)
Drake JC, Bruns DR, Peelor FF 3rd, Biela LM, Miller RA, Miller BF, et al. Long-lived Snell dwarf mice display increased proteostatic mechanisms that are not dependent on decreased mTORC1 activity. Aging Cell. 2015;14:474–82. https://doi.org/10.1111/acel.12329 . (PMID: 10.1111/acel.12329257205744406676)
English KL, Paddon-Jones D. Protecting muscle mass and function in older adults during bed rest. Curr Opin Clin Nutr Metab Care. 2010;13:34–9. https://doi.org/10.1097/MCO.0b013e328333aa66 . (PMID: 10.1097/MCO.0b013e328333aa66198982323276215)
Fernandez-Gonzalo R, Lundberg TR, Tesch PA. Acute molecular responses in untrained and trained muscle subjected to aerobic and resistance exercise training versus resistance training alone. Acta Physiol. 2013;209:283–94. https://doi.org/10.1111/apha.12174 . (PMID: 10.1111/apha.12174)
Figueiredo VC, McCarthy JJ. Regulation of ribosome biogenesis in skeletal muscle hypertrophy. Physiology. 2019;34:30–42. https://doi.org/10.1152/physiol.00034.2018 . (PMID: 10.1152/physiol.00034.201830540235)
Fluckey JD, Vary TC, Jefferson LS, Evans WJ, Farrell PA. Insulin stimulation of protein synthesis in rat skeletal muscle following resistance exercise is maintained with advancing age. J Gerontol A Biol Sci Med Sci. 1996;51:B323–30. https://doi.org/10.1093/gerona/51a.5.b323 . (PMID: 10.1093/gerona/51a.5.b3238808980)
Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, et al. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet Muscle. 2011;1:11. https://doi.org/10.1186/2044-5040-1-11 . (PMID: 10.1186/2044-5040-1-11217980893156634)
Funai K, Parkington JD, Carambula S, Fielding RA. Age-associated decrease in contraction-induced activation of downstream targets of Akt/mTor signaling in skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2006;290:R1080–6. https://doi.org/10.1152/ajpregu.00277.2005 . (PMID: 10.1152/ajpregu.00277.200516306159)
Gao Y, Kostrominova TY, Faulkner JA, Wineman AS. Age-related changes in the mechanical properties of the epimysium in skeletal muscles of rats. J Biomech. 2008;41:465–9. https://doi.org/10.1016/j.jbiomech.2007.09.021 . (PMID: 10.1016/j.jbiomech.2007.09.02118031752)
Gosselin LE, Martinez DA, Vailas AC, Sieck GC. Passive length-force properties of senescent diaphragm: relationship with collagen characteristics. J Appl Physiol. 1994;76:2680–5. https://doi.org/10.1152/jappl.1994.76.6.2680 . (PMID: 10.1152/jappl.1994.76.6.26807928900)
Guay C, Regazzi R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab. 2017;19(Suppl 1):137–46. https://doi.org/10.1111/dom.13027 . (PMID: 10.1111/dom.1302728880477)
Gumucio JP, Mendias CL. Atrogin-1, MuRF-1, and sarcopenia. Endocrine. 2013;43:12–21. https://doi.org/10.1007/s12020-012-9751-7 . (PMID: 10.1007/s12020-012-9751-722815045)
Haddad F, Adams GR, Bodell PW, Baldwin KM. Isometric resistance exercise fails to counteract skeletal muscle atrophy processes during the initial stages of unloading. J Appl Physiol. 2006;100:433–41. https://doi.org/10.1152/japplphysiol.01203.2005 . (PMID: 10.1152/japplphysiol.01203.200516239603)
Hirani V, Blyth F, Naganathan V, le Couteur DG, Seibel MJ, Waite LM, et al. Sarcopenia is associated with incident disability, institutionalization, and mortality in community-dwelling older men: the concord health and ageing in men project. J Am Med Dir Assoc. 2015;16:607–13. https://doi.org/10.1016/j.jamda.2015.02.006 . (PMID: 10.1016/j.jamda.2015.02.00625820131)
Hofer T, Marzetti E, Xu J, Seo AY, Gulec S, Knutson MD, et al. Increased iron content and RNA oxidative damage in skeletal muscle with aging and disuse atrophy. Exp Gerontol. 2008;43:563–70. https://doi.org/10.1016/j.exger.2008.02.007 . (PMID: 10.1016/j.exger.2008.02.007183953852601529)
Hornberger TA, Mateja RD, Chin ER, Andrews JL, Esser KA. Aging does not alter the mechanosensitivity of the p38, p70S6k, and JNK2 signaling pathways in skeletal muscle. J Appl Physiol. 2005;98:1562–6. https://doi.org/10.1152/japplphysiol.00870.2004 . (PMID: 10.1152/japplphysiol.00870.200415361519)
Hunt ER, Confides AL, Abshire SM, Dupont-Versteegden EE, Butterfield TA. Massage increases satellite cell number independent of the age-associated alterations in sarcolemma permeability. Physiol Rep. 2019;7(17):e14200. https://doi.org/10.14814/phy2.14200 . (PMID: 10.14814/phy2.14200314960526732494)
Kennedy P, Barnhill E, Gray C, Brown C, van Beek EJR, Roberts N, et al. Magnetic resonance elastography (MRE) shows significant reduction of thigh muscle stiffness in healthy older adults. Geroscience. 2020;42:311–21. https://doi.org/10.1007/s11357-019-00147-2 . (PMID: 10.1007/s11357-019-00147-231865527)
Kimball SR, O’Malley JP, Anthony JC, Crozier SJ, Jefferson LS. Assessment of biomarkers of protein anabolism in skeletal muscle during the life span of the rat: sarcopenia despite elevated protein synthesis. Am J Physiol Endocrinol Metab. 2004;287:E772–80. https://doi.org/10.1152/ajpendo.00535.2003 . (PMID: 10.1152/ajpendo.00535.200315187001)
Kirby TJ, Lee JD, England JH, Chaillou T, Esser KA, McCarthy JJ. Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis. J Appl Physiol. 2015;119:321–7. https://doi.org/10.1152/japplphysiol.00296.2015 . (PMID: 10.1152/japplphysiol.00296.2015260489734538281)
Kortebein P. RE: effect of short-term hospitalization on functional capacity in patients not restricted to bed. Am J Phys Med Rehabil. 2008;87:425; author reply 425-426–425; author reply 426. https://doi.org/10.1097/PHM.0b013e31816dd045 . (PMID: 10.1097/PHM.0b013e31816dd04518427224)
Kortebein P, Symons TB, Ferrando A, Paddon-Jones D, Ronsen O, Protas E, et al. Functional impact of 10 days of bed rest in healthy older adults. J Gerontol A Biol Sci Med Sci. 2008;63:1076–81. (PMID: 10.1093/gerona/63.10.1076)
Kovanen V, Suominen H, Heikkinen E. Collagen of slow twitch and fast twitch muscle fibres in different types of rat skeletal muscle. Eur J Appl Physiol. 1984;52:235–42. (PMID: 10.1007/BF00433399)
Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, et al. Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol. 2009;587:211–7. https://doi.org/10.1113/jphysiol.2008.164483 . (PMID: 10.1113/jphysiol.2008.16448319001042)
Lagerwaard B, Nieuwenhuizen AG, de Boer VCJ, Keijer J. In vivo assessment of mitochondrial capacity using NIRS in locomotor muscles of young and elderly males with similar physical activity levels. Geroscience. 2020;42:299–310. https://doi.org/10.1007/s11357-019-00145-4 . (PMID: 10.1007/s11357-019-00145-431858399)
Lawrence MM, Van Pelt DW, Confides AL, Hunt ER, Hettinger ZR, Laurin JL, Reid JJ, Peelor FF 3rd, Butterfield TA, Dupont-Versteegden EE, Miller BF. Massage as a mechanotherapy promotes skeletal muscle protein and ribosomal turnover but does not mitigate muscle atrophy during disuse in adult rats. Acta Physiol. 2020;e13460. https://doi.org/10.1111/apha.13460 .
Lee JH, Jun HS. Role of myokines in regulating skeletal muscle mass and function. Front Physiol. 2019;10:42. https://doi.org/10.3389/fphys.2019.00042 . (PMID: 10.3389/fphys.2019.00042307610186363662)
Louis E, Raue U, Yang Y, Jemiolo B, Trappe S. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol. 2007;103:1744–51. https://doi.org/10.1152/japplphysiol.00679.2007 . (PMID: 10.1152/japplphysiol.00679.200717823296)
MacDougall JD, Gibala MJ, Tarnopolsky MA, MacDonald JR, Interisano SA, Yarasheski KE. The time course for elevated muscle protein synthesis following heavy resistance exercise. Can J Appl Physiol. 1995;20:480–6. (PMID: 10.1139/h95-038)
Magne H, Savary-Auzeloux I, Vazeille E, Claustre A, Attaix D, Anne L, et al. Lack of muscle recovery after immobilization in old rats does not result from a defect in normalization of the ubiquitin-proteasome and the caspase-dependent apoptotic pathways. J Physiol. 2011;589:511–24. https://doi.org/10.1113/jphysiol.2010.201707 . (PMID: 10.1113/jphysiol.2010.20170721115641)
Marino JS, Tausch BJ, Dearth CL, Manacci MV, McLoughlin TJ, Rakyta SJ, et al. Beta2-integrins contribute to skeletal muscle hypertrophy in mice. Am J Physiol Cell Physiol. 2008;295:C1026–36. https://doi.org/10.1152/ajpcell.212.2008 . (PMID: 10.1152/ajpcell.212.200818753316)
Marsh AP, Rejeski WJ, Espeland MA, Miller ME, Church TS, Fielding RA, et al. Muscle strength and BMI as predictors of major mobility disability in the Lifestyle Interventions and Independence for Elders Pilot (LIFE-P). J Gerontol A Biol Sci Med Sci. 2011;66:1376–83. https://doi.org/10.1093/gerona/glr158 . (PMID: 10.1093/gerona/glr15821975090)
Mathis AD, Naylor BC, Carson RH, Evans E, Harwell J, Knecht J, et al. Mechanisms of in vivo ribosome maintenance change in response to nutrient signals. Mol Cell Proteomics. 2017;16:243–54. https://doi.org/10.1074/mcp.M116.063255 . (PMID: 10.1074/mcp.M116.06325527932527)
Miller BF, Wolff CA, Peelor FF 3rd, Shipman PD, Hamilton KL. Modeling the contribution of individual proteins to mixed skeletal muscle protein synthetic rates over increasing periods of label incorporation. J Appl Physiol. 2015;118:655–61. https://doi.org/10.1152/japplphysiol.00987.2014 . (PMID: 10.1152/japplphysiol.00987.2014255932884360018)
Miller BF, Hamilton KL, Majeed ZR, Abshire SM, Confides AL, Hayek AM, et al. Enhanced skeletal muscle regrowth and remodelling in massaged and contralateral non-massaged hindlimb. J Physiol. 2018;596:83–103. https://doi.org/10.1113/JP275089 . (PMID: 10.1113/JP27508929090454)
Miller BF, Baehr LM, Musci RV, Reid JJ, Peelor FF 3rd, Hamilton KL, et al. Muscle-specific changes in protein synthesis with aging and reloading after disuse atrophy. J Cachexia Sarcopenia Muscle. 2019;10:1195–209. https://doi.org/10.1002/jcsm.12470 . (PMID: 10.1002/jcsm.12470313135026903438)
Moro T, Brightwell CR, Deer RR, Graber TG, Galvan E, Fry CS, et al. Muscle protein anabolic resistance to essential amino acids does not occur in healthy older adults before or after resistance exercise training. J Nutr. 2018;148:900–9. https://doi.org/10.1093/jn/nxy064 . (PMID: 10.1093/jn/nxy064297966486251608)
Mosoni L, Malmezat T, Valluy MC, Houlier ML, Attaix D, Mirand PP. Lower recovery of muscle protein lost during starvation in old rats despite a stimulation of protein synthesis. Am J Physiol Endocrinol Metab. 1999;277:E608–16. https://doi.org/10.1152/ajpendo.1999.277.4.E608 . (PMID: 10.1152/ajpendo.1999.277.4.E608)
Munn J, Herbert RD, Gandevia SC. Contralateral effects of unilateral resistance training: a meta-analysis. J Appl Physiol. 2004;96:1861–6. https://doi.org/10.1152/japplphysiol.00541.2003 . (PMID: 10.1152/japplphysiol.00541.200315075311)
Munn J, Herbert RD, Hancock MJ, Gandevia SC. Training with unilateral resistance exercise increases contralateral strength. J Appl Physiol. 2005;99:1880–4. https://doi.org/10.1152/japplphysiol.00559.2005 . (PMID: 10.1152/japplphysiol.00559.200516024518)
Murach KA, Confides AL, Ho A, Jackson JR, Ghazala LS, Peterson CA, et al. Depletion of Pax7+ satellite cells does not affect diaphragm adaptations to running in young or aged mice. J Physiol. 2017;595:6299–311. https://doi.org/10.1113/JP274611 . (PMID: 10.1113/JP274611287369005621498)
Paddon-Jones D, Sheffield-Moore M, Zhang XJ, Volpi E, Wolf SE, Aarsland A, et al. Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am J Physiol Endocrinol Metab. 2004;286:E321–8. https://doi.org/10.1152/ajpendo.00368.2003 . (PMID: 10.1152/ajpendo.00368.200314583440)
Parkington JD, LeBrasseur NK, Siebert AP, Fielding RA. Contraction-mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle. J Appl Physiol. 2004;97:243–8. https://doi.org/10.1152/japplphysiol.01383.2003 . (PMID: 10.1152/japplphysiol.01383.200315033970)
Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Phys. 1997;273:E99–107.
Rantanen T, Guralnik JM, Sakari-Rantala R, Leveille S, Simonsick EM, Ling S, et al. Disability, physical activity, and muscle strength in older women: the women’s health and aging study. Arch Phys Med Rehabil. 1999;80:130–5. (PMID: 10.1016/S0003-9993(99)90109-0)
Rasmussen BB, Fujita S, Wolfe RR, Mittendorfer B, Roy M, Rowe VL, et al. Insulin resistance of muscle protein metabolism in aging. FASEB J. 2006;20:768–9. https://doi.org/10.1096/fj.05-4607fje . (PMID: 10.1096/fj.05-4607fje164649552804965)
Roberts MD, Kerksick CM, Dalbo VJ, Hassell SE, Tucker PS, Brown R. Molecular attributes of human skeletal muscle at rest and after unaccustomed exercise: an age comparison. J Strength Cond Res. 2010;24:1161–8. https://doi.org/10.1519/JSC.0b013e3181da786f . (PMID: 10.1519/JSC.0b013e3181da786f20440120)
Ruddy KL, Carson RG. Neural pathways mediating cross education of motor function. Front Hum Neurosci. 2013;7:397. https://doi.org/10.3389/fnhum.2013.00397 . (PMID: 10.3389/fnhum.2013.00397239086163725409)
Sieljacks P, Wang J, Groennebaek T, Rindom E, Jakonsgaard JE, Herskind J, et al. Six weeks of low-load blood flow restricted and high-load resistance exercise training produce similar increases in cumulative myofibrillar protein synthesis and ribosomal biogenesis in healthy males. Front Physiol. 2019;10:649. https://doi.org/10.3389/fphys.2019.00649 . (PMID: 10.3389/fphys.2019.00649311913476548815)
Stec MJ, Mayhew DL, Bamman MM. The effects of age and resistance loading on skeletal muscle ribosome biogenesis. J Appl Physiol. 2015;119:851–7. https://doi.org/10.1152/japplphysiol.00489.2015 . (PMID: 10.1152/japplphysiol.00489.2015262947504747892)
Suetta C. Plasticity and function of human skeletal muscle in relation to disuse and rehabilitation: influence of ageing and surgery. Dan Med J. 2017;64(8):B5377. (PMID: 28869034)
Suresh K. An overview of randomization techniques: an unbiased assessment of outcome in clinical research. J Hum Reprod Sci. 2011;4:8–11. https://doi.org/10.4103/0974-1208.82352 . (PMID: 10.4103/0974-1208.82352217727323136079)
Szulc P, Munoz F, Marchand F, Chapurlat R, Delmas PD. Rapid loss of appendicular skeletal muscle mass is associated with higher all-cause mortality in older men: the prospective MINOS study. Am J Clin Nutr. 2010;91:1227–36. https://doi.org/10.3945/ajcn.2009.28256 . (PMID: 10.3945/ajcn.2009.2825620237137)
Thomson DM, Gordon SE. Impaired overload-induced muscle growth is associated with diminished translational signalling in aged rat fast-twitch skeletal muscle. J Physiol. 2006;574:291–305. https://doi.org/10.1113/jphysiol.2006.107490 . (PMID: 10.1113/jphysiol.2006.107490166275691817794)
Van Pelt DW, Confides AL, Abshire SM, Hunt ER, Dupont-Versteegden EE, Butterfield TA. Age-related responses to a bout of mechanotherapy in skeletal muscle of rats. J Appl Physiol. 2019;127:1782–91. https://doi.org/10.1152/japplphysiol.00641.2019 . (PMID: 10.1152/japplphysiol.00641.201931670600)
Waters-Banker C, Butterfield TA, Dupont-Versteegden EE. Immunomodulatory effects of massage on nonperturbed skeletal muscle in rats. J Appl Physiol. 2014;116:164–75. https://doi.org/10.1152/japplphysiol.00573.2013 . (PMID: 10.1152/japplphysiol.00573.201324201707)
Wen Y, Murach KA, Vechetti IJ Jr, Fry CS, Vickery C, Peterson CA, et al. MyoVision: software for automated high-content analysis of skeletal muscle immunohistochemistry. J Appl Physiol. 2018;124:40–51. https://doi.org/10.1152/japplphysiol.00762.2017 . (PMID: 10.1152/japplphysiol.00762.201728982947)
West DWD, Marcotte GR, Chason CM, Juo N, Baehr LM, Bodine SC, et al. Normal ribosomal biogenesis but shortened protein synthetic response to acute eccentric resistance exercise in old skeletal muscle. Front Physiol. 2018;9:1915. https://doi.org/10.3389/fphys.2018.01915 . (PMID: 10.3389/fphys.2018.0191530692935)
White JR, Confides AL, Moore-Reed S, Hoch JM, Dupont-Versteegden EE. Regrowth after skeletal muscle atrophy is impaired in aged rats, despite similar responses in signaling pathways. Exp Gerontol. 2015;64:17–32. https://doi.org/10.1016/j.exger.2015.02.007 . (PMID: 10.1016/j.exger.2015.02.007256816394359098)
Whitham M, et al. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab. 2018;27:237–251.e4. https://doi.org/10.1016/j.cmet.2017.12.001 . (PMID: 10.1016/j.cmet.2017.12.00129320704)
Wood LK, Kayupov E, Gumucio JP, Mendias CL, Claflin DR, Brooks SV. Intrinsic stiffness of extracellular matrix increases with age in skeletal muscles of mice. J Appl Physiol. 2014;117:363–9. https://doi.org/10.1152/japplphysiol.00256.2014 . (PMID: 10.1152/japplphysiol.00256.2014249948844137235)
You JS, Anderson GB, Dooley MS, Hornberger TA. The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice. Dis Model Mech. 2015;8:1059–69. https://doi.org/10.1242/dmm.019414 . (PMID: 10.1242/dmm.019414260921214582099)
Grant Information:
R01 AR081002 United States AR NIAMS NIH HHS; T32 AG052363 United States AG NIA NIH HHS; TL1 TR001997 United States TR NCATS NIH HHS; R01 AT009268 United States AT NCCIH NIH HHS; R21 AG042699 United States AG NIA NIH HHS
Contributed Indexing:
Keywords: Aging; Disuse atrophy; Mechanotherapy; Protein turnover; Ribosome biogenesis
Entry Date(s):
Date Created: 20200627 Date Completed: 20210531 Latest Revision: 20240112
Update Code:
20240112
PubMed Central ID:
PMC8050124
DOI:
10.1007/s11357-020-00215-y
PMID:
32588343
Czasopismo naukowe
Massage is a viable mechanotherapy to improve protein turnover during disuse atrophy and improve muscle regrowth during recovery from disuse atrophy in adult muscle. Therefore, we investigated whether massage can cause beneficial adaptations in skeletal muscle from aged rats during normal weight-bearing (WB) conditions, hindlimb suspension (HS), or reloading (RE) following HS. Aged (30 months) male Fischer 344/Brown Norway rats were divided into two experiments: (1) WB for 7 days (WB, n = 8), WB with massage (WBM, n = 8), HS for 7 days (HS7, n = 8), or HS with massage (HSM, n = 8), and (2) WB for 14 days (WB14, n = 8), HS for 14 days (HS14, n = 8), reloading (RE, n = 10), or reloading with massage (REM, n = 10) for 7 days following HS. Deuterium oxide (D 2 O) labeling was used to assess dynamic protein and ribosome turnover in each group and anabolic signaling pathways were assessed. Massage did have an anabolic benefit during RE or WB. In contrast, massage during HS enhanced myofibrillar protein turnover in both the massaged limb and contralateral non-massaged limb compared with HS, but this did not prevent muscle loss. Overall, the data demonstrate that massage is not an effective mechanotherapy for prevention of atrophy during muscle disuse or recovery of muscle mass during reloading in aged rats.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies