Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Efficient photodynamic therapy against drug-resistant prostate cancer using replication-deficient virus particles and talaporfin sodium.

Tytuł:
Efficient photodynamic therapy against drug-resistant prostate cancer using replication-deficient virus particles and talaporfin sodium.
Autorzy:
Akter S; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .; Department of Physiology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh. .
Saito S; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Inai M; Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Honda N; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.; Institute for Academic Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Hazama H; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Nishikawa T; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Kaneda Y; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Awazu K; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.; Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.; Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Źródło:
Lasers in medical science [Lasers Med Sci] 2021 Jun; Vol. 36 (4), pp. 743-750. Date of Electronic Publication: 2020 Jun 27.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: London : Springer
Original Publication: London : Baillière Tindall, c1986-
MeSH Terms:
Photochemotherapy*
Drug Resistance, Neoplasm/*drug effects
Porphyrins/*therapeutic use
Prostatic Neoplasms/*drug therapy
Virion/*physiology
Animals ; Antineoplastic Agents/therapeutic use ; Humans ; Lasers, Semiconductor ; Male ; PC-3 Cells ; Photosensitizing Agents/pharmacology ; Porphyrins/pharmacology ; Sendai virus/drug effects
References:
Ferlay J et al (Mar. 2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. (PMID: 10.1002/ijc.29210)
Zhou CK et al (Mar. 2016) Prostate cancer incidence in 43 populations worldwide: an analysis of time trends overall and by age group. Int J Cancer 138(6):1388–1400. (PMID: 10.1002/ijc.29894)
Survival rates for prostate cancer. [Online]. Available: https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/survival-rates.html . [Accessed: 26-Dec-2019].
Semenas J, Allegrucci C, Boorjian SA, Mongan NP, Liao Persson J (2012) Overcoming drug resistance and treating advanced prostate Cancer. Curr Drug Targets 13(10):1308–1323. (PMID: 10.2174/138945012802429615)
Juarranz Á, Jaén P, Sanz-Rodríguez F, Cuevas J, González S (2008) Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol 10(3):148–154. (PMID: 10.1007/s12094-008-0172-2)
Allison RR, Sibata CH (2010) Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis and Photodynamic Therapy 7(2):61–75. (PMID: 10.1016/j.pdpdt.2010.02.001)
Anand S, Ortel BJ, Pereira SP, Hasan T, Maytin EV (2012) Biomodulatory approaches to photodynamic therapy for solid tumors. Cancer Letters 326(1):8–16. (PMID: 10.1016/j.canlet.2012.07.026)
Dougherty TJ, Cooper MT, Mang TS (Jan. 1990) Cutaneous phototoxic occurrences in patients receiving Photofrin®. Lasers Surg Med 10(5):485–488. (PMID: 10.1002/lsm.1900100514)
Agostinis P et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281. (PMID: 10.3322/caac.20114)
Kataoka H et al (2017) New photodynamic therapy with next-generation photosensitizers. Annals of Translational Medicine 5(8) AME Publishing Company.
J. Akimoto, Photodynamic therapy for malignant brain tumors, Neurologia Medico-Chirurgica, vol. 56, no. 4. Japan Neurosurgical Society, pp. 151–157, 15-Apr-2016.
Usuda J et al (Dec. 2007) Photodynamic therapy for lung cancers based on novel photodynamic diagnosis using talaporfin sodium (NPe6) and autofluorescence bronchoscopy. Lung Cancer 58(3):317–323. (PMID: 10.1016/j.lungcan.2007.06.026)
Yano T et al (2017) A multicenter phase II study of salvage photodynamic therapy using talaporfin sodium (ME2906) and a diode laser (PNL6405EPG) for local failure after chemoradiotherapy or radiotherapy for esophageal cancer. Oncotarget 8(13):22135–22144. (PMID: 10.18632/oncotarget.14029)
Wang S, Bromley E, Xu L, Chen JC, Keltner L (2010) Talaporfin sodium. Expert Opinion on Pharmacotherapy 11(1):133–140. (PMID: 10.1517/14656560903463893)
J. S. Nelson, W. G. Roberts, and M. W. Berns, In vivo studies on the utilization of mono-L-aspartyl chlorin (NPe6) for photodynamic therapy., undefined, 1987.
Minamide T et al (Feb. 2020) Advantages of salvage photodynamic therapy using talaporfin sodium for local failure after chemoradiotherapy or radiotherapy for esophageal cancer. Surg Endosc 34(2):899–906. (PMID: 10.1007/s00464-019-06846-3)
Kaneda Y et al (2002) Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Mol Ther 6(2):219–226. (PMID: 10.1006/mthe.2002.0647)
Zhang Q, Li Y, Shi Y, Zhang Y (2008) HVJ envelope vector, a versatile delivery system: Its development, application, and perspectives. Biochemical and Biophysical Research Communications 373(3) Academic Press:345–349. (PMID: 10.1016/j.bbrc.2008.06.055)
Kaneda Y (2010) Update on non-viral delivery methods for cancer therapy: possibilities of a drug delivery system with anticancer activities beyond delivery as a new therapeutic tool. Expert Opin Drug Deliv 7(9):1079–1093. (PMID: 10.1517/17425247.2010.510511)
Kawaguchi Y, Miyamoto Y, Inoue T, Kaneda Y (2009) Efficient eradication of hormone-resistant human prostate cancers by inactivated Sendai virus particle. Int J Cancer 124(10):2478–2487. (PMID: 10.1002/ijc.24234)
Chang CY, Tai JA, Li S, Nishikawa T, Kaneda Y (2016) Virus-stimulated neutrophils in the tumor microenvironment enhance T cell-mediated anti-tumor immunity. Oncotarget 7(27):42195–42207. (PMID: 10.18632/oncotarget.9743)
Matsushima-Miyagi T et al (2012) TRAIL and Noxa are selectively upregulated in prostate cancer cells downstream of the RIG-I/MAVS signaling pathway by nonreplicating Sendai virus particles. Clin Cancer Res 18(22):6271–6283. (PMID: 10.1158/1078-0432.CCR-12-1595)
Hong Y et al (2018) Highly selective photodynamic therapy with a short drug-light interval using a cytotoxic photosensitizer porphyrus envelope for drug-resistant prostate cancer cells. Int J Clin Med 09(01):8–22. (PMID: 10.4236/ijcm.2018.91002)
Inai M et al (2017) Photodynamic therapy using a cytotoxic photosensitizer porphyrus envelope that targets the cell membrane. Photodiagn Photodyn Ther 20:238–245. (PMID: 10.1016/j.pdpdt.2017.10.017)
Akter S et al (2019) Photodynamic therapy by lysosomal-targeted drug delivery using talaporfin sodium incorporated into inactivated virus particles. LASER Ther.
Spikes JD, Bommer JC (1993) Photosensitizing properties of mono-l-aspartyl chlorin e6 (NPe6): a candidate sensitizer for the photodynamic therapy of tumors. J Photochem Photobiol B Biol 17(2):135–143. (PMID: 10.1016/1011-1344(93)80006-U)
Matveeva OV, Kochneva GV, Netesov SV, Onikienko SB, Chumakov PM Mechanisms of oncolysis by Paramyxovirus Sendai. Acta Naturae 7(2):6–16.
Bateman A et al (2000) Fusogenic membrane glycoproteins as a novel class of genes for the local and immune-mediated control of tumor growth. Cancer Res 60(6):1492–1497. (PMID: 10749110)
Ebert O, Shinozaki K, Kournioti C, Park MS, García-Sastre A, Woo SLC (2004) Syncytia induction enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for cancer. Cancer Res 64(9):3265–3270. (PMID: 10.1158/0008-5472.CAN-03-3753)
Saga K, Kaneda Y (2015) Oncolytic Sendai virus-based virotherapy for cancer: recent advances. Oncolytic virotherapy 4:141–147. (PMID: 275126774918391)
Kaneda Y (2013) The RIG-I/MAVS signaling pathway in cancer cell-selective apoptosis. Oncoimmunology 2(4).
Grant Information:
JP15K16322 Japan Society for the Promotion of Science KAKENHI; J169013067 Japan Agency for Medical Research and Development
Contributed Indexing:
Keywords: Hemagglutinating virus of Japan envelope; Photodynamic therapy; Prostate cancer; Talaporfin sodium
Substance Nomenclature:
0 (Antineoplastic Agents)
0 (Photosensitizing Agents)
0 (Porphyrins)
P4ROX5ELT2 (Talaporfin)
Entry Date(s):
Date Created: 20200628 Date Completed: 20210527 Latest Revision: 20210527
Update Code:
20240105
DOI:
10.1007/s10103-020-03076-1
PMID:
32592133
Czasopismo naukowe
To enhance the potency of photosensitizer, we developed a novel photosensitizer, Laserphyrin®-HVJ-E (L-HVJ-E), by incorporating talaporfin sodium (Laserphyrin®, Meiji Seika Pharma) into hemagglutinating virus of Japan envelope (HVJ-E). In this study, we examined the optimal Laserphyrin® concentration for preparation of Laserphyrin®-HVJ-E which had photocytotoxicity and maintained direct cytotoxicity derived from HVJ-E. Then, potency of Laserphyrin®-HVJ-E and Laserphyrin® were compared in vitro using castration-resistant prostate cancer cell line (PC-3). A laser diode (L660P120, Thorlabs, USA) with a wavelength of 664 nm was used for light activation of Laserphyrin®, which corresponds to an absorption peak of Laserphyrin® and provides a high therapeutic efficiency. The photocytotoxicity and direct cytotoxicity of Laserphyrin®-HVJ-E prepared using various Laserphyrin® concentrations were evaluated using PC-3 cell in vitro. We categorized the treatment groups as Group 1: 50 μL of D-MEM treatment group, Group 2: HVJ-E treatment group, Group 3: Laserphyrin®-HVJ-E treatment group, and Group 4: Laserphyrin® treatment group. Group 3 was subjected to different concentrations of Laserphyrin®-HVJ-E suspension, and all groups were subjected to different incubation periods (24, 48 h), (30 min, 1 h, or 3 h,) respectively, without and after PDT. Laserphyrin®-HVJ-E prepared using 15 mM Laserphyrin® had high photocytotoxicity and maintained HVJ-E's ability to induce direct cytotoxicity. Therapeutic effect of Laserphyrin®-HVJ-E was substantially equivalent to that of Laserphyrin® alone even at half Laserphyrin® concentration. By utilizing Laserphyrin®-HVJ-E, PDT could be performed with lower Laserphyrin® concentration. In addition, Laserphyrin®-HVJ-E showed higher potency than Laserphyrin® by combining cytotoxicities of HVJ-E and PDT.
Erratum in: Lasers Med Sci. 2020 Jul 13;:. (PMID: 32656733)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies