Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The capillary Kir channel as sensor and amplifier of neuronal signals: Modeling insights on K + -mediated neurovascular communication.

Tytuł:
The capillary Kir channel as sensor and amplifier of neuronal signals: Modeling insights on K -mediated neurovascular communication.
Autorzy:
Moshkforoush A; Department of Biomedical Engineering, Florida International University, Miami, FL 33199.
Ashenagar B; Department of Biomedical Engineering, Florida International University, Miami, FL 33199.
Harraz OF; Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405.
Dabertrand F; Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405.; Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.
Longden TA; Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405.; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201.
Nelson MT; Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405.; Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, United Kingdom.
Tsoukias NM; Department of Biomedical Engineering, Florida International University, Miami, FL 33199; .; School of Chemical Engineering, National Technical University of Athens, Zografou 157 72, Greece.
Źródło:
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2020 Jul 14; Vol. 117 (28), pp. 16626-16637. Date of Electronic Publication: 2020 Jun 29.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Washington, DC : National Academy of Sciences
MeSH Terms:
Neurovascular Coupling*
Neurons/*metabolism
Potassium/*metabolism
Potassium Channels, Inwardly Rectifying/*metabolism
Animals ; Brain/blood supply ; Brain/metabolism ; Cerebrovascular Circulation ; Endothelial Cells/chemistry ; Endothelial Cells/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Neurons/chemistry ; Potassium/chemistry ; Potassium Channels, Inwardly Rectifying/chemistry ; Potassium Channels, Inwardly Rectifying/genetics ; Signal Transduction ; TRPV Cation Channels/chemistry ; TRPV Cation Channels/genetics ; TRPV Cation Channels/metabolism
References:
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3569-E3577. (PMID: 29581272)
J Neurosci. 1999 Jul 15;19(14):5875-88. (PMID: 10407027)
Nature. 2010 Nov 11;468(7321):232-43. (PMID: 21068832)
Neuron. 2017 Sep 27;96(1):17-42. (PMID: 28957666)
Nature. 1993 Mar 11;362(6416):127-33. (PMID: 7680768)
Nat Neurosci. 2007 Nov;10(11):1369-76. (PMID: 17965657)
Stroke. 2002 Nov;33(11):2692-9. (PMID: 12411663)
Circ Res. 2012 May 11;110(10):1311-21. (PMID: 22492531)
J Neurosci. 2013 May 8;33(19):8411-22. (PMID: 23658179)
Am J Physiol. 1990 Sep;259(3 Pt 2):H902-8. (PMID: 2168682)
Elife. 2018 Aug 07;7:. (PMID: 30084828)
Nat Neurosci. 2013 Jul;16(7):889-97. (PMID: 23749145)
J Neurosci. 2004 Oct 13;24(41):8940-9. (PMID: 15483113)
Bull Math Biol. 2015 Jan;77(1):230-49. (PMID: 25583354)
Am J Physiol Cell Physiol. 2007 Jul;293(1):C277-93. (PMID: 17459942)
Nat Neurosci. 2006 Feb;9(2):260-7. (PMID: 16388306)
Science. 1993 Nov 12;262(5136):1072-4. (PMID: 8093125)
J Physiol. 1996 Apr 15;492 ( Pt 2):419-30. (PMID: 9019539)
Microcirculation. 2018 Feb;25(2):. (PMID: 29117630)
Biophys J. 2015 Mar 24;108(6):1566-1576. (PMID: 25809269)
Elife. 2016 May 31;5:. (PMID: 27244241)
J Physiol. 1996 Nov 15;497 ( Pt 1):95-107. (PMID: 8951714)
Nature. 2014 Apr 3;508(7494):55-60. (PMID: 24670647)
Proc R Soc Lond B Biol Sci. 1981 Mar 6;211(1183):205-35. (PMID: 6111797)
J Appl Physiol (1985). 2006 Jan;100(1):328-35. (PMID: 16357086)
J Physiol. 1890 Jan;11(1-2):85-158.17. (PMID: 16991945)
PLoS One. 2015 May 04;10(5):e0125266. (PMID: 25938437)
Circ J. 2010 Apr;74(4):608-16. (PMID: 20234102)
Nat Neurosci. 2006 Nov;9(11):1397-1403. (PMID: 17013381)
J Neurosci. 2014 Sep 24;34(39):13139-50. (PMID: 25253859)
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3811-6. (PMID: 20133576)
Microcirculation. 2017 Apr;24(3):. (PMID: 27652592)
J Am Heart Assoc. 2014 Jun 12;3(3):e000787. (PMID: 24926076)
Nat Neurosci. 2003 Jan;6(1):43-50. (PMID: 12469126)
J Gen Physiol. 1996 Aug;108(2):105-13. (PMID: 8854340)
Science. 2013 Jan 11;339(6116):197-200. (PMID: 23307741)
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E796-805. (PMID: 25646445)
Biophys J. 2007 Mar 15;92(6):1952-65. (PMID: 17189315)
Annu Rev Neurosci. 2006;29:449-76. (PMID: 16776593)
Physiol Rev. 2001 Oct;81(4):1415-59. (PMID: 11581493)
J Physiol. 2016 Jun 15;594(12):3271-85. (PMID: 26840527)
Nature. 1994 Nov 24;372(6504):366-9. (PMID: 7969496)
Am J Physiol. 1989 Mar;256(3 Pt 2):H838-45. (PMID: 2923242)
Circ Res. 1990 Oct;67(4):1035-9. (PMID: 2170051)
Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H1319-28. (PMID: 16617135)
Nat Neurosci. 2017 May;20(5):717-726. (PMID: 28319610)
J Physiol. 1952 Aug;117(4):500-44. (PMID: 12991237)
J Physiol. 1991 Aug;439:277-99. (PMID: 1895239)
J Physiol. 1999 Jan 15;514 ( Pt 2):505-13. (PMID: 9852331)
Am J Physiol Heart Circ Physiol. 2010 Jan;298(1):H52-65. (PMID: 19855062)
J Physiol. 1996 Sep 15;495 ( Pt 3):769-84. (PMID: 8887782)
Nat Neurosci. 2016 Dec;19(12):1619-1627. (PMID: 27775719)
Sci Data. 2018 Aug 21;5:180160. (PMID: 30129931)
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):E4678-87. (PMID: 24218625)
Grant Information:
17POST33650030 United States AHA_ American Heart Association-American Stroke Association; R15 HL121778 United States HL NHLBI NIH HHS; R35 HL140027 United States HL NHLBI NIH HHS; R01 HL136636 United States HL NHLBI NIH HHS; R01 NS110656 United States NS NINDS NIH HHS
Contributed Indexing:
Keywords: cerebral blood flow; computational modeling; electrical conduction; inward-rectifying potassium; neurovascular unit
Substance Nomenclature:
0 (Kir2.1 channel)
0 (Potassium Channels, Inwardly Rectifying)
0 (TRPV Cation Channels)
0 (Trpv4 protein, mouse)
RWP5GA015D (Potassium)
Entry Date(s):
Date Created: 20200701 Date Completed: 20200921 Latest Revision: 20220129
Update Code:
20240105
PubMed Central ID:
PMC7368319
DOI:
10.1073/pnas.2000151117
PMID:
32601236
Czasopismo naukowe
Neuronal activity leads to an increase in local cerebral blood flow (CBF) to allow adequate supply of oxygen and nutrients to active neurons, a process termed neurovascular coupling (NVC). We have previously shown that capillary endothelial cell (cEC) inwardly rectifying K + (Kir) channels can sense neuronally evoked increases in interstitial K + and induce rapid and robust dilations of upstream parenchymal arterioles, suggesting a key role of cECs in NVC. The requirements of this signal conduction remain elusive. Here, we utilize mathematical modeling to investigate how small outward currents in stimulated cECs can elicit physiologically relevant spread of vasodilatory signals within the highly interconnected brain microvascular network to increase local CBF. Our model shows that the Kir channel can act as an "on-off" switch in cECs to hyperpolarize the cell membrane as extracellular K + increases. A local hyperpolarization can be amplified by the voltage-dependent activation of Kir in neighboring cECs. Sufficient Kir density enables robust amplification of the hyperpolarizing stimulus and produces responses that resemble action potentials in excitable cells. This Kir-mediated excitability can remain localized in the stimulated region or regeneratively propagate over significant distances in the microvascular network, thus dramatically increasing the efficacy of K + for eliciting local hyperemia. Modeling results show how changes in cEC transmembrane current densities and gap junctional resistances can affect K + -mediated NVC and suggest a key role for Kir as a sensor of neuronal activity and an amplifier of retrograde electrical signaling in the cerebral vasculature.
Competing Interests: The authors declare no competing interest.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies