Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Mitochondrial DNA genomes revealed different patterns of high-altitude adaptation in high-altitude Tajiks compared with Tibetans and Sherpas.

Tytuł:
Mitochondrial DNA genomes revealed different patterns of high-altitude adaptation in high-altitude Tajiks compared with Tibetans and Sherpas.
Autorzy:
Chen Y; Department of Military Medical Geography, Army Health Service Training Base, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
Gong L; Department of Military Medical Geography, Army Health Service Training Base, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
Liu X; Department of Military Medical Geography, Army Health Service Training Base, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
Chen X; Department of Military Medical Geography, Army Health Service Training Base, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
Yang S; Health Department of the 957th Hospital of PLA, Ali, 859000, Tibet, China. .
Luo Y; Department of Military Medical Geography, Army Health Service Training Base, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .
Źródło:
Scientific reports [Sci Rep] 2020 Jun 29; Vol. 10 (1), pp. 10592. Date of Electronic Publication: 2020 Jun 29.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Adaptation, Physiological/*genetics
Ethnicity/*genetics
Genome, Mitochondrial/*genetics
Altitude ; Altitude Sickness/genetics ; Asia, Central ; Asian People/genetics ; China ; DNA, Mitochondrial/analysis ; DNA, Mitochondrial/genetics ; Asia, Eastern ; Genetics, Population/methods ; Haplotypes/genetics ; Humans ; Mitochondria/genetics ; Sequence Analysis, DNA/methods ; Tibet
References:
Bigham, A. W. Genetics of human origin and evolution: high-altitude adaptations. Curr. Opin. Genet. Dev. 41, 8–13 (2016). (PMID: 10.1016/j.gde.2016.06.018)
Xu, S. et al. A genome-wide search for signals of high-altitude adaptation in Tibetans. Mol. Biol. Evol. 28, 1003–1011 (2011). (PMID: 10.1093/molbev/msq277)
Peng, Y. et al. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol. Biol. Evol. 28, 1075–1081 (2011). (PMID: 10.1093/molbev/msq290)
Wang, B. et al. On the origin of Tibetans and their genetic basis in adapting high-altitude environments. PLoS ONE 6, e17002 (2011). (PMID: 10.1371/journal.pone.0017002)
Yi, X. et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329, 75–78 (2010). (PMID: 10.1126/science.1190371)
Simonson, T. S. et al. Genetic evidence for high-altitude adaptation in Tibet. Science 329, 72–75 (2010). (PMID: 10.1126/science.1189406)
Beall, C. M. et al. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in tibetan highlanders. Proc. Natl. Acad. Sci. USA 107, 11459–11464 (2010). (PMID: 10.1073/pnas.1002443107)
Bigham, A. et al. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet. 6, e1001116 (2010). (PMID: 10.1371/journal.pgen.1001116)
Bigham, A. W. et al. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations. Hum. Genomics 4, 79–90 (2009). (PMID: 10.1186/1479-7364-4-2-79)
Udpa, N. et al. Whole genome sequencing of Ethiopian highlanders reveals conserved hypoxia tolerance genes. Genome Biol. 15, R36 (2014). (PMID: 10.1186/gb-2014-15-2-r36)
Scheinfeldt, L. B. et al. Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biol. 13, R1 (2012). (PMID: 10.1186/gb-2012-13-1-r1)
Li, Q. et al. Mitochondrial haplogroup M9a1a1c1b is associated with hypoxic adaptation in the Tibetans. J. Hum. Genet. 61, 1021–1026 (2016). (PMID: 10.1038/jhg.2016.95)
Kang, L. et al. MtDNA analysis reveals enriched pathogenic mutations in Tibetan highlanders. Sci. Rep. 6, 31083 (2016). (PMID: 10.1038/srep31083)
Ji, F. et al. Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proc. Natl. Acad. Sci. USA 109, 7391–7396 (2012). (PMID: 10.1073/pnas.1202484109)
Caudron-Herger, M. & Diederichs, S. Mitochondrial mutations in human cancer: curation of translation. RNA Biol. 15, 62–69 (2018). (PMID: 10.1080/15476286.2017.1373239)
Droma, Y. et al. Adaptation to high altitude in Sherpas: association with the insertion/deletion polymorphism in the angiotensin-converting enzyme gene. Wilderness Environ. Med. 19, 22–29 (2008). (PMID: 10.1580/06-WEME-OR-073.1)
Kang, L. et al. MtDNA lineage expansions in Sherpa population suggest adaptive evolution in Tibetan highlands. Mol. Biol. Evol. 30, 2579–2587 (2013). (PMID: 10.1093/molbev/mst147)
Peng, M. S. et al. Mitochondrial genomes uncover the maternal history of the Pamir populations. Eur. J. Hum. Genet. 26, 124–136 (2018). (PMID: 10.1038/s41431-017-0028-8)
Ebner, S. et al. Mitochondrial haplogroup T is associated with obesity in Austrian juveniles and adults. PLoS ONE 10, e135622 (2015). (PMID: 10.1371/journal.pone.0135622)
Lu, D. et al. Ancestral origins and genetic history of Tibetan highlanders. Am. J. Hum. Genet. 99, 580–594 (2016). (PMID: 10.1016/j.ajhg.2016.07.002)
Luo, Y., Gao, W., Liu, F. & Gao, Y. Mitochondrial nt3010G-nt3970C haplotype is implicated in high-altitude adaptation of Tibetans. Mitochondrial DNA 22, 181–190 (2011). (PMID: 10.3109/19401736.2011.632771)
Bhandari, S. et al. Genetic evidence of a recent Tibetan ancestry to Sherpas in the HIMALAYAN region. Sci. Rep. 5, 16249 (2015). (PMID: 10.1038/srep16249)
Divne, A. M., Rasten-Almqvist, P., Rajs, J., Gyllensten, U. & Allen, M. Analysis of the mitochondrial genome in sudden infant death syndrome. Acta Paediatr. 92, 386–388 (2003). (PMID: 10.1111/j.1651-2227.2003.tb00562.x)
Bhardwaj, A. Investigating the role of site specific synonymous variation in disease association studies. Mitochondrion 16, 83–88 (2014). (PMID: 10.1016/j.mito.2013.12.005)
Kabekkodu, S. P. et al. Mitochondrial DNA variation analysis in cervical cancer. Mitochondrion 16, 73–82 (2014). (PMID: 10.1016/j.mito.2013.07.001)
Singh, R. K., Saini, S., Verma, D., Kalaiarasan, P. & Bamezai, R. Mitochondrial ND5 mutation mediated elevated ROS regulates apoptotic pathway epigenetically in a P53 dependent manner for generating pro-cancerous phenotypes. Mitochondrion 35, 35–43 (2017). (PMID: 10.1016/j.mito.2017.05.001)
Fan, L. & Yao, Y. G. An update to MitoTool: using a new scoring system for faster mtDNA haplogroup determination. Mitochondrion 13, 360–363 (2013). (PMID: 10.1016/j.mito.2013.04.011)
Chakraborty, R. et al. The complete mitochondrial genome of Melon thrips, Thrips palmi (Thripinae): comparative analysis. PLoS ONE 13, e199404 (2018).
Richards, M., Macaulay, V., Torroni, A. & Bandelt, H. J. In search of geographical patterns in european mitochondrial DNA. Am. J. Hum. Genet. 71, 1168–1174 (2002). (PMID: 10.1086/342930)
Excoffier, L. & Lischer, H. E. Arlequin Suite Ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010). (PMID: 10.1111/j.1755-0998.2010.02847.x)
De Fanti, S. et al. Fine dissection of human mitochondrial DNA haplogroup HV lineages reveals paleolithic signatures from European Glacial Refugia. PLoS ONE 10, e144391 (2015).
Ho, S. Y. & Endicott, P. The crucial role of calibration in molecular date estimates for the peopling of the Americas. Am. J. Hum. Genet. 83, 142–147 (2008). (PMID: 10.1016/j.ajhg.2008.06.014)
Substance Nomenclature:
0 (DNA, Mitochondrial)
Entry Date(s):
Date Created: 20200701 Date Completed: 20210115 Latest Revision: 20221207
Update Code:
20240105
PubMed Central ID:
PMC7324373
DOI:
10.1038/s41598-020-67519-z
PMID:
32601317
Czasopismo naukowe
High-altitude Tajiks (HA-Tajiks), Tibetans and Sherpas are three groups of high-altitude native people in China. The differences in the mtDNA genome between the three populations and the role of the mtDNA genome in the high-altitude adaptation of HA-Tajiks were seldom investigated. In this study, 80 HA-Tajiks were enrolled, and their whole mtDNA genomes were sequenced. The haplogroup of each subject was determined by comparison to the revised Cambridge Reference Sequence (rCRS). Ten additional populations from East Asia and Central Asia, including Tibetans and Sherpas, were selected as references. The top haplogroup was U, followed by H, T and J. Principle component analysis and genetic distance analysis indicated that HA-Tajiks showed a close relationship with Wakhi Tajiks, Pamiri Tajiks and Sarikoli Tajiks, indicating that they should be considered one nation scattered around the Pamirs. The difference in the mtDNA genome between HA-Tajiks and Sherpas was significantly greater than that between HA-Tajiks and Tibetans. Among the 13 genes related to the OXPHOS pathway encoded by the mtDNA genome, HA-Tajiks showed more significant differences in ND3 and CYTB compared to Tibetans. Compared to Sherpas, HA-Tajiks showed more significant differences in ND1, ND2, COX1, ATP8, ATP6, ND3, ND4L, ND4, ND5 and CYTB. The associated functional changes and underlying molecular mechanisms should be explored by molecular and biochemical investigations in further studies.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies