Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.

Tytuł:
CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.
Autorzy:
Sun X; Department of Anatomy and Neurobiology, Department of Radiology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
Liu X; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
Starr ER; Department of Anatomy, Howard University College of Medicine, Washington, DC 20059.
Liu S; Department of Anatomy, Howard University College of Medicine, Washington, DC 20059 .
Źródło:
The Journal of neuroscience : the official journal of the Society for Neuroscience [J Neurosci] 2020 Aug 05; Vol. 40 (32), pp. 6189-6206. Date of Electronic Publication: 2020 Jun 30.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Publication: Washington, DC : Society for Neuroscience
Original Publication: [Baltimore, Md.] : The Society, c1981-
MeSH Terms:
GABAergic Neurons/*physiology
Interneurons/*physiology
Olfactory Bulb/*cytology
Olfactory Pathways/*cytology
Animals ; Cholecystokinin/genetics ; Cholecystokinin/metabolism ; Female ; GABAergic Neurons/metabolism ; Interneurons/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Neural Inhibition ; Olfactory Bulb/physiology ; Olfactory Pathways/physiology ; Synaptic Potentials
References:
J Neurophysiol. 2012 Aug 1;108(3):782-93. (PMID: 22592311)
J Neurophysiol. 2001 Dec;86(6):2986-97. (PMID: 11731555)
Neuron. 2012 Oct 4;76(1):98-115. (PMID: 23040809)
Eur J Neurosci. 2011 Sep;34(5):787-99. (PMID: 21819462)
J Neurophysiol. 2017 Oct 1;118(4):2034-2051. (PMID: 28724776)
J Neurophysiol. 2001 May;85(5):2213-23. (PMID: 11353036)
J Neurosci. 2007 May 23;27(21):5621-32. (PMID: 17522307)
Neuroscience. 2019 Nov 1;419:1-4. (PMID: 31487544)
Behav Biol. 1975 Jul;14(3):295-308. (PMID: 1137549)
J Neurosci. 2004 Mar 24;24(12):3023-30. (PMID: 15044541)
J Neurosci. 2011 Jul 20;31(29):10615-26. (PMID: 21775605)
Neuron. 2017 Jan 4;93(1):33-47. (PMID: 27989459)
J Comp Neurol. 1985 Sep 22;239(4):373-83. (PMID: 2864364)
J Neurosci. 1999 Oct 15;19(20):8808-17. (PMID: 10516300)
J Comp Neurol. 1985 May 22;235(4):503-18. (PMID: 2582006)
Front Neural Circuits. 2010 Sep 23;4:. (PMID: 20941380)
Eur J Neurosci. 2006 Aug;24(4):1124-36. (PMID: 16930438)
J Neurosci. 2006 Nov 1;26(44):11257-66. (PMID: 17079653)
Exp Neurol. 1966 Jan;14(1):44-56. (PMID: 5900523)
J Neurosci. 2013 Jan 23;33(4):1552-63. (PMID: 23345229)
Neuron. 2003 Apr 24;38(2):265-76. (PMID: 12718860)
Cell. 1996 Nov 15;87(4):675-86. (PMID: 8929536)
J Neurophysiol. 1989 Jul;62(1):96-108. (PMID: 2754484)
J Neurosci. 2012 Jun 6;32(23):7970-85. (PMID: 22674272)
Science. 2009 May 22;324(5930):1080-4. (PMID: 19389999)
Curr Opin Neurobiol. 2010 Apr;20(2):172-6. (PMID: 20307966)
J Neurosci. 2009 Oct 28;29(43):13454-64. (PMID: 19864558)
J Neurosci. 2008 Jun 18;28(25):6360-71. (PMID: 18562606)
J Comp Neurol. 1983 Sep 20;219(3):339-55. (PMID: 6619342)
Chem Senses. 2013 Jul;38(6):459-74. (PMID: 23761680)
J Comp Neurol. 1982 Jul 10;208(4):419-30. (PMID: 7119169)
Physiol Rev. 2005 Jan;85(1):281-317. (PMID: 15618482)
Annu Rev Physiol. 1999;61:521-42. (PMID: 10099700)
Neuron. 2015 Jul 1;87(1):193-207. (PMID: 26139373)
J Neurosci. 2008 Oct 8;28(41):10311-22. (PMID: 18842890)
J Neurosci. 2016 Sep 14;36(37):9604-17. (PMID: 27629712)
Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):319-24. (PMID: 11120888)
J Neurosci. 2013 Feb 13;33(7):2916-26. (PMID: 23407950)
J Neurophysiol. 2012 Jan;107(1):473-83. (PMID: 22013233)
Nature. 2002 Sep 19;419(6904):296-300. (PMID: 12239567)
J Comp Neurol. 1994 Aug 22;346(4):541-58. (PMID: 7983243)
J Neurosci. 2009 Feb 18;29(7):2043-52. (PMID: 19228958)
J Physiol. 2003 Jan 15;546(Pt 2):363-74. (PMID: 12527724)
J Comp Psychol. 1983 Mar;97(1):12-23. (PMID: 6872503)
Brain Res Bull. 1994;35(2):119-23. (PMID: 7953767)
Neuron. 2012 Jul 26;75(2):320-9. (PMID: 22841316)
Physiol Behav. 1987;41(1):59-69. (PMID: 3685154)
Cell. 1994 Dec 30;79(7):1245-55. (PMID: 7528109)
Cell. 1994 Dec 16;79(6):981-91. (PMID: 8001145)
J Neurosci. 2004 Jul 28;24(30):6676-85. (PMID: 15282270)
J Neurosci. 2015 Mar 11;35(10):4319-31. (PMID: 25762678)
J Neurosci. 2010 Jan 20;30(3):1185-96. (PMID: 20089927)
Front Neural Circuits. 2015 Nov 05;9:72. (PMID: 26594154)
J Comp Neurol. 1983 Jun 20;217(2):227-37. (PMID: 6886054)
J Neurophysiol. 1986 May;55(5):1076-90. (PMID: 3012009)
J Cell Sci. 1970 Nov;7(3):631-51. (PMID: 5492279)
J Neurophysiol. 2000 Sep;84(3):1194-203. (PMID: 10979995)
Neuron. 2016 Jul 20;91(2):397-411. (PMID: 27346531)
Science. 1972 Jan 7;175(4017):84-7. (PMID: 5008584)
Cereb Cortex. 2004 Oct;14(10):1122-33. (PMID: 15115742)
eNeuro. 2019 Jun 27;6(3):. (PMID: 31209151)
J Neurophysiol. 2009 Apr;101(4):1988-2001. (PMID: 19225171)
J Comp Neurol. 1984 Jul 1;226(3):346-56. (PMID: 6747027)
J Comp Neurol. 2007 Apr 20;501(6):825-36. (PMID: 17311323)
Physiol Rev. 1972 Oct;52(4):864-917. (PMID: 4343762)
Nat Neurosci. 2005 Mar;8(3):354-64. (PMID: 15696160)
J Cell Sci. 1970 Jul;7(1):125-55. (PMID: 5476853)
J Physiol. 2018 Jun;596(11):2185-2207. (PMID: 29572837)
J Neurosci. 2004 Feb 4;24(5):1190-9. (PMID: 14762137)
J Comp Neurol. 1984 Jun 1;225(4):511-26. (PMID: 6203939)
Nature. 2003 Dec 11;426(6967):623-9. (PMID: 14668854)
Brain Res. 1977 Jun 24;129(1):152-7. (PMID: 68803)
Neurosci Res. 2015 Apr;93:144-57. (PMID: 25240284)
Sci Rep. 2018 May 16;8(1):7625. (PMID: 29769664)
Nat Neurosci. 2007 May;10(5):631-9. (PMID: 17450136)
J Cell Sci. 1971 Sep;9(2):305-45. (PMID: 4108056)
Prog Brain Res. 2014;208:223-51. (PMID: 24767485)
J Neurophysiol. 1990 Sep;64(3):932-47. (PMID: 2230935)
J Neurobiol. 1996 May;30(1):123-76. (PMID: 8727988)
J Neurophysiol. 2008 Mar;99(3):1559-64. (PMID: 18216231)
J Neurosci. 2008 Feb 13;28(7):1625-39. (PMID: 18272683)
Neuron. 1999 Jun;23(2):385-97. (PMID: 10399943)
Biophys J. 2009 Mar 4;96(5):1803-14. (PMID: 19254539)
Front Neural Circuits. 2014 Jul 30;8:88. (PMID: 25126057)
J Physiol. 2017 Oct 1;595(19):6349-6362. (PMID: 28791713)
Neuron. 2011 Sep 22;71(6):962-73. (PMID: 21943596)
J Neurochem. 2002 Jul;82(2):295-304. (PMID: 12124430)
Brain Res. 1978 Dec 22;159(1):17-28. (PMID: 728793)
Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1230-4. (PMID: 11158622)
J Neurosci. 2013 Jan 30;33(5):1790-6. (PMID: 23365218)
Proc Natl Acad Sci U S A. 1990 Sep;87(17):6728-32. (PMID: 1975695)
Nat Neurosci. 2014 Sep;17(9):1208-16. (PMID: 24997762)
Grant Information:
R01 DC014447 United States DC NIDCD NIH HHS
Contributed Indexing:
Keywords: inhibitory interneuron; neural circuits; olfactory bulb; projection neurons; synaptic plasticity; synaptic transmission
Substance Nomenclature:
9011-97-6 (Cholecystokinin)
Entry Date(s):
Date Created: 20200702 Date Completed: 20210104 Latest Revision: 20210206
Update Code:
20240105
PubMed Central ID:
PMC7406279
DOI:
10.1523/JNEUROSCI.0769-20.2020
PMID:
32605937
Czasopismo naukowe
Delineation of functional synaptic connections is fundamental to understanding sensory processing. Olfactory signals are synaptically processed initially in the olfactory bulb (OB) where neural circuits are formed among inhibitory interneurons and the output neurons mitral cells (MCs) and tufted cells (TCs). TCs function in parallel with but differently from MCs and are further classified into multiple subpopulations based on their anatomic and functional heterogeneities. Here, we combined optogenetics with electrophysiology to characterize the synaptic transmission from a subpopulation of TCs, which exclusively express the neuropeptide cholecystokinin (CCK), to two groups of spatially segregated GABAergic interneurons, granule cells (GCs) and glomerular interneurons in mice of both sexes with four major findings. First, CCKergic TCs receive direct input from the olfactory sensory neurons (OSNs). This monosynaptic transmission exhibits high fidelity in response to repetitive OSN input. Second, CCKergic TCs drive GCs through two functionally distinct types of monosynaptic connections: (1) dendrodendritic synapses onto GC distal dendrites via their lateral dendrites in the superficial external plexiform layer (EPL); (2) axodendritic synapses onto GC proximal dendrites via their axon collaterals or terminals in the internal plexiform layer (IPL) on both sides of each bulb. Third, CCKergic TCs monosynaptically excite two subpopulations of inhibitory glomerular interneurons via dendrodendritic synapses. Finally, sniff-like patterned activation of CCKergic TCs induces robust frequency-dependent depression of the dendrodendritic synapses but facilitation of the axodendritic synapses. These results demonstrated important roles of the CCKergic TCs in olfactory processing by orchestrating OB inhibitory activities. SIGNIFICANCE STATEMENT Neuronal morphology and organization in the olfactory bulb (OB) have been extensively studied, however, the functional operation of neuronal interactions is not fully understood. We combined optogenetic and electrophysiological approaches to investigate the functional operation of synaptic connections between a specific population of excitatory output neuron and inhibitory interneurons in the OB. We found that these output neurons formed distinct types of synapses with two populations of spatially segregated interneurons. The functional characteristics of these synapses vary significantly depending on the presynaptic compartments so that these output neurons can dynamically rebalance inhibitory feedback or feedforward to other neurons types in the OB in response to dynamic rhythmic inputs.
(Copyright © 2020 the authors.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies