Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Prophylaxis with a multicomponent nutraceutical abates transient cerebral ischemia/reperfusion injury.

Tytuł:
Prophylaxis with a multicomponent nutraceutical abates transient cerebral ischemia/reperfusion injury.
Autorzy:
Akinmoladun AC; Department of Biochemistry, The Federal University of Technology, Akure, Nigeria.
Obadaye TS; Department of Biochemistry, The Federal University of Technology, Akure, Nigeria.
Olaleye MT; Department of Biochemistry, The Federal University of Technology, Akure, Nigeria.
Akindahunsi AA; Department of Biochemistry, The Federal University of Technology, Akure, Nigeria.
Źródło:
Journal of food biochemistry [J Food Biochem] 2021 Mar; Vol. 45 (3), pp. e13351. Date of Electronic Publication: 2020 Jul 02.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2008- : Hoboken, NJ : Wiley
Original Publication: Westport, Conn. : Food & Nutrition Press
MeSH Terms:
Ischemic Attack, Transient*
Reperfusion Injury*/drug therapy
Reperfusion Injury*/prevention & control
Animals ; Dietary Supplements ; Male ; Oxidative Stress ; Rats ; Rats, Wistar
References:
Abdelsalam, R. M., & Safar, M. M. (2015). Neuroprotective effects of vildagliptin in rat rotenone Parkinson’s disease model: Role of RAGE-NFκB and Nrf2-antioxidant signaling pathways. Journal of Neurochemistry, 133(5), 700-707. https://doi.org/10.1111/jnc.13087.
Aggarwal, A., Gaur, V., & Kumar, A. (2010). Nitric oxide mechanism in the protective effect of naringin against post-stroke depression (PSD) in mice. Life Sciences, 86(25-26), 928-935. https://doi.org/10.1016/j.lfs.2010.04.011.
Akinmoladun, A. C. (2016). Protective effect of TrévoTM, a phytopharmaceutical product, against potassium cyanide-induced oxidative stress and neurotoxicity in vitro. Biokemistri, 28(2), 78-87.
Akinmoladun, A. C., Akinrinola, B. L., Olaleye, M. T., & Farombi, E. O. (2015). Kolaviron, a Garcinia kola Biflavonoid Complex, Protects Against Ischemia/Reperfusion Injury: Pertinent Mechanistic Insights from Biochemical and Physical Evaluations in Rat Brain. Neurochemical Research, 40(4), 777-787. https://doi.org/10.1007/s11064-015-1527-z.
Akinmoladun, A. C., Oguntunde, K. O., Owolabi, L. O., Ilesanmi, O. B., Ogundele, J. O., Olaleye, M. T., & Akindahunsi, A. A. (2017). Reversal of acetaminophen-generated oxidative stress and concomitant hepatotoxicity by a phytopharmaceutical product. Food Science and Human Wellness, 6(1), 20-27. https://doi.org/10.1016/j.fshw.2016.11.001.
Akinmoladun, A. C., Saliu, I. O., Olowookere, B. D., Ojo, O. B., Olaleye, M. T., Farombi, E. O., & Akindahunsi, A. A. (2018). Improvement of 2-vessel occlusion cerebral ischaemia/reperfusion-induced corticostriatal electrolyte and redox imbalance, lactic acidosis and modified acetylcholinesterase activity by kolaviron correlates with reduction in neurobehavioural deficits. Annals of Neurosciences, 25(1), 53-62. https://doi.org/10.1159/000484517.
Al-Mufti, F., Amuluru, K., Roth, W., Nuoman, R., El-Ghanem, M., & Meyers, P. M. (2018). Cerebral ischemic reperfusion injury following recanalization of large vessel occlusions. Neurosurgery, 82(6), 781-789. https://doi.org/10.1093/neuros/nyx341.
Amani, H., Habibey, R., Shokri, F., Hajmiresmail, S. J., Akhavan, O., Mashaghi, A., & Pazoki-Toroudi, H. (2019). Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Scientific Reports, 9(1), 1-15. https://doi.org/10.1038/s41598-019-42633-9.
Amani, H., Mostafavi, E., Alebouyeh, M. R., Arzaghi, H., Akbarzadeh, A., Pazoki-Toroudi, H., & Webster, T. J. (2019). Would colloidal gold nanocarriers present an effective diagnosis or treatment for ischemic stroke? International Journal of Nanomedicine, 14, 8013-8031. https://doi.org/10.2147/IJN.S210035.
Andrabi, S. S., Parvez, S., & Tabassum, H. (2017). Progesterone induces neuroprotection following reperfusionpromoted mitochondrial dysfunction after focal cerebral ischemia in rats. DMM Disease Models and Mechanisms, 10(6), 787-796. https://doi.org/10.1242/dmm.025692.
Avan, A., Digaleh, H., Di Napoli, M., Stranges, S., Behrouz, R., Shojaeianbabaei, G., … Azarpazhooh, M. R. (2019). Socioeconomic status and stroke incidence, prevalence, mortality, and worldwide burden: An ecological analysis from the Global Burden of Disease Study 2017. BMC Medicine, 17(1), 191. https://doi.org/10.1186/s12916-019-1397-3.
Béjot, Y., Daubail, B., & Giroud, M. (2016). Epidemiology of stroke and transient ischemic attacks: Current knowledge and perspectives. Revue Neurologique, 172(1), 59-68. https://doi.org/10.1016/j.neurol.2015.07.013.
Beley, A., Bertrand, N., & Beley, P. (1991). Cerebral ischemia: Changes in brain choline, acetylcholine, and other monoamines as related to energy metabolism. Neurochemical Research, 16(5), 555-561. https://doi.org/10.1007/BF00974874.
Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292.
Beutler, E., Duron, O., & Kelly, B. M. (1963). Improved method for the determination of blood glutathione. The Journal of Laboratory and Clinical Medicine, 61, 882-888.
Birchmachin, M. A., Briggs, H. L., Saborido, A. A., Bindoff, L. A., & Turnbull, D. M. (1994). An evaluation of the measurement of the activities of complexes I-IV in the respiratory chain of human skeletal muscle mitochondria. Biochemical Medicine and Metabolic Biology, 51(1), 35-42. https://doi.org/10.1006/bmmb.1994.1004.
Broughton, B. R. S., Lim, R., Arumugam, T. V., Drummond, G. R., Wallace, E. M., & Sobey, C. G. (2013). Post-stroke inflammation and the potential efficacy of novel stem cell therapies: Focus on amnion epithelial cells. Frontiers in Cellular Neuroscience. Frontiers Media SA. 6(66). https://doi.org/10.3389/fncel.2012.00066.
Burtenshaw, D., Kitching, M., Redmond, E. M., Megson, I. L., & Cahill, P. A. (2019). Reactive oxygen species (ROS), intimal thickening, and subclinical atherosclerotic disease. Frontiers in Cardiovascular Medicine. Frontiers Media S.A. 6(89). https://doi.org/10.3389/fcvm.2019.00089.
Chaudhary, S., & Parvez, S. (2012). An in vitro approach to assess the neurotoxicity of valproic acid-induced oxidative stress in cerebellum and cerebral cortex of young rats. Neuroscience, 225, 258-268. https://doi.org/10.1016/j.neuroscience.2012.08.060.
Craine, J. E., Hall, E. S., & Kaufman, S. (1972). The isolation and characterization of dihydropteridine reductase from sheep liver. Jounal of Biological Chemistry, 247, 6082-6091.
Dhakad, P. K., Sharma, P. K., Kumar, S., Kumar, N., Dudhe, R., & Mishra, R. (2016). Therapeutic role of phytoconstituents in treatment of cerebral ischemia/reperfusion injury. Journal of Pharmacognosy and Phytochemistry, 5(2), 187-194.
Donahue, M. J., & Hendrikse, J. (2018). Improved detection of cerebrovascular disease processes: Introduction to the Journal of Cerebral Blood Flow and Metabolism special issue on cerebrovascular disease. Journal of Cerebral Blood Flow and Metabolism, 38(9), 1387-1390. https://doi.org/10.1177/0271678X17739802.
Eiserich, J. P., Hristova, M., Cross, C. E., Jones, A. D., Freeman, B. A., Halliwell, B., & van der Vliet, A. (1998). Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature, 391(6665), 393-397. https://doi.org/10.1038/34923.
Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-95. https://doi.org/10.1016/0006-2952(61)90145-9.
Engwa, G. A. (2018). Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. In T. Asao & M. Asaduzzaman (Eds.), Phytochemicals - Source of antioxidants and role in disease prevention, Rijeka, Croatia: InTech. https://doi.org/10.5772/intechopen.76719.
Farbiszewski, R., Bielawski, K., Bielawska, A., & Sobaniec, W. (1995). Spermine protects in vivo the antioxidant enzymes in transiently hypoperfused rat brain. Acta Neurobiologiae Experimentalis, 55(4), 253-258. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8713355.
Feigin, V. L., Norrving, B., & Mensah, G. A. (2017). Global burden of stroke. Circulation Research, 120(3), 439-448. https://doi.org/10.1161/CIRCRESAHA.116.308413.
Frank, R. J., Damasio, H., & Grabowski, T. J. (1997). Brainvox: An interactive, multimodal visualization and analysis system for neuroanatomical imaging. NeuroImage, 5(1), 13-30. https://doi.org/10.1006/nimg.1996.0250.
Fu, S.-H., Zhang, H.-F., Yang, Z.-B., Li, T.-B., Liu, B., Lou, Z., … Peng, J. (2014). Alda-1 reduces cerebral ischemia/reperfusion injury in rat through clearance of reactive aldehydes. Naunyn-Schmiedeberg’s Archives of Pharmacology, 387(1), 87-94. https://doi.org/10.1007/s00210-013-0922-8.
Gou, Z. P., Song, Z. H., Chen, X. G., Hu, X. C., Wang, Y., Fan, K., … Zheng, L. I. (2019). Safety, pharmacokinetics and pharmacodynamics of TNHH, a novel targeted neutrophil-inhibitory hirulog hybrid glycoprotein. Healthy Volunteers. CNS Drugs, 33(6), 605-614. https://doi.org/10.1007/s40263-019-00628-0.
Guevara, I., Iwanejko, J., Dembińska-Kieć, A., Pankiewicz, J., Wanat, A., Anna, P., … Szczudlik, A. (1998). Determination of nitrite/nitrate in human biological material by the simple Griess reaction . Clinica Chimica Acta, 274(2), 177-188. https://doi.org/10.1016/s0009-8981(98)00060-6.
Gulati, P., & Singh, N. (2014). Pharmacological evidence for connection of nitric oxide-mediated pathways in neuroprotective mechanism of ischemic postconditioning in mice. Journal of Pharmacy and Bioallied Sciences, 6(4), 233-240. https://doi.org/10.4103/0975-7406.142951.
Guo, L., Zhang, Y., & Li, Q. (2009). Spectrophotometric determination of dopamine hydrochloride in pharmaceutical, banana, urine and serum samples by potassium ferricyanide-Fe(III). Analytical Science, 25, 1451-1455. https://doi.org/10.1002/chem.200801528.
Haque, R., Bin-Hafeez, B., Parvez, S., Pandey, S., Sayeed, I., Ali, M., & Raisuddin, S. (2003). Aqueous extract of walnut (Juglans regia L.) protects mice against cyclophosphamideinduced biochemical toxicity. Human & Experimental Toxicology, 22(9), 473-480. https://doi.org/10.1191/0960327103ht388oa.
Holt, A., Sharman, D. F., Baker, G. B., & Palcic, M. M. (1997). A continuous spectrophotometric assay for monoamine oxidase and related enzymes in tissue homogenates. Analytical Biochemistry, 244(2), 384-392. https://doi.org/10.1006/abio.1996.9911.
Huang, J., Upadhyay, U. M., & Tamargo, R. J. (2006). Inflammation in stroke and focal cerebral ischemia. Surgical Neurology, 66(3), 232-245. https://doi.org/10.1016/j.surneu.2005.12.028.
Huang, L., Wang, S., Ma, F., Zhang, Y., Peng, Y., Xing, C., … Peng, Y. (2018). From stroke to neurodegenerative diseases: The multi-target neuroprotective effects of 3-n-butylphthalide and its derivatives. Pharmacological Research, 135, 201-211. https://doi.org/10.1016/j.phrs.2018.08.007.
Hunter, A. J., Hatcher, J., Virley, D., Nelson, P., Irving, E., Hadingham, S. J., & Parsons, A. A. (2000). Functional assessments in mice and rats after focal stroke. Neuropharmacology, 39(5), 806-816. https://doi.org/10.1016/s0028-3908(99)00262-2.
Ichord, R. N., & Bearden, D. R. (2017). Perinatal metabolic encephalopathies. K. F. Swaiman S. Ashwal In D. M. Ferriero N. F. Schor R. S. Finkel A. L. Gropman P. L. Pearl & M. I. Shevell (Eds.), Swaiman’s pediatric neurology: Principles and practice (6th ed., pp. 171-177). Edinburgh: Elsevier Inc. https://doi.org/10.1016/B978-0-323-37101-8.00023-0.
Jiang, Y., Li, L., Liu, B., Zhang, Y., Chen, Q., & Li, C. (2014). Vagus nerve stimulation attenuates cerebral ischemia and reperfusion injury via endogenous cholinergic pathway in rat. PLoS One, 9(7), e102342. https://doi.org/10.1371/journal.pone.0102342.
Jin, Z., Wu, J., Oh, S. Y., Kim, K. W., & Shin, B. S. (2010). The effect of stress on stroke recovery in a photothrombotic stroke animal model. Brain Research, 1363, 191-197. https://doi.org/10.1016/j.brainres.2010.09.081.
Jivad, N., & Rabiei, Z. (2015). Review on herbal medicine on brain ischemia and reperfusion. Asian Pacific Journal of Tropical Biomedicine. Hainan Medical University. 5(10), 789-795. https://doi.org/10.1016/j.apjtb.2015.07.015.
Kakkar, P., Das, B., & Viswanathan, P. N. (1984). A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemistry & Biophysics, 21(2), 130-132. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6490072.
Kaneko, Y., Cortes, L., Sanberg, C., Acosta, S., Bickford, P. C., & Borlongan, C. V. (2012). Dietary supplementations as neuroprotective therapies: Focus on NT-020 diet benefits in a rat model of stroke. International Journal of Molecular Sciences, 13(6), 7424-7444. https://doi.org/10.3390/ijms13067424.
Katan, M., & Luft, A. (2018). Global burden of stroke. Seminars in Neurology, 38(2), 208-211. https://doi.org/10.1055/s-0038-1649503.
Kim, J. Y., Kawabori, M., & Yenari, M. A. (2014). Innate inflammatory responses in stroke: Mechanisms and potential therapeutic targets. Current Medicinal Chemistry, 21(18), 2076-2097. https://doi.org/10.2174/0929867321666131228205146.
Lai, T. W., Zhang, S., & Wang, Y. T. (2014). Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Progress in Neurobiology, 115, 157-188. https://doi.org/10.1016/j.pneurobio.2013.11.006.
Lee, J. C., & Won, M. H. (2014). Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils. Anatomy and Cell Biology, 47(3), 149-156. https://doi.org/10.5115/acb.2014.47.3.149.
Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., … Stadtman, E. R. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 186, 464-478. https://doi.org/10.1016/0076-6879(90)86141-h.
Liu, F., Lu, J., Manaenko, A., Tang, J., & Hu, Q. (2018). Mitochondria in ischemic stroke: New insight and implications. Aging and Disease, 9(5), 924-937. https://doi.org/10.14336/AD.2017.1126.
Maddahi, A., & Edvinsson, L. (2010). Cerebral ischemia induces microvascular pro-inflammatory cytokine expression via the MEK/ERK pathway. Journal of Neuroinflammation, 7, 14. https://doi.org/10.1186/1742-2094-7-14.
Malone, K., Amu, S., Moore, A. C., & Waeber, C. (2019). Immunomodulatory therapeutic strategies in stroke. Frontiers in Pharmacology. Frontiers Media S.A. 10, https://doi.org/10.3389/fphar.2019.00630.
Mestre, H., Cohen-Minian, Y., Zajarias-Fainsod, D., & Ibarr, A. (2013). Pharmacological treatment of acute ischemic stroke. In U. Kishore (Ed.), Neurodegenerative diseases, Rijeka, Croatia: InTech. https://doi.org/10.5772/53774.
Mishra, V., Verma, R., & Raghubir, R. (2010). Neuroprotective effect of flurbiprofen in focal cerebral ischemia: The possible role of ASIC1a. Neuropharmacology, 59(7-8), 582-588. https://doi.org/10.1016/j.neuropharm.2010.08.015.
Moskowitz, M. A., Lo, E. H., & Iadecola, C. (2010). The science of stroke: Mechanisms in search of treatments. Neuron, 67(2), 181-198. https://doi.org/10.1016/j.neuron.2010.07.002.
Ojo, O. B., Amoo, Z. A., Saliu, I. O., Olaleye, M. T., Farombi, E. O., & Akinmoladun, A. C. (2019). Neurotherapeutic potential of kolaviron on neurotransmitter dysregulation, excitotoxicity, mitochondrial electron transport chain dysfunction and redox imbalance in 2-VO brain ischemia/reperfusion injury. Biomedicine & Pharmacotherapy, 111, 859-872. https://doi.org/10.1016/j.biopha.2018.12.144.
Paul, R., & Borah, A. (2017). Global loss of acetylcholinesterase activity with mitochondrial complexes inhibition and inflammation in brain of hypercholesterolemic mice. Scientific Reports, 7(1), 1-13. https://doi.org/10.1038/s41598-017-17911-z.
Prajda, N., & Weber, G. (1975). Malignant transformation-linked imbalance: Decreased xanthine oxidase activity in hepatomas. FEBS Letters, 59(2), 245-249. https://doi.org/10.1016/0014-5793(75)80385-1.
Sadeghpour, Y., Taheraghdam, A., Khalili, M., Hashemilar, M., Sadeghi Hokmabadi, E., Shaafi, S., … Savadi Osgouei, D. (2020). Whey protein plus lipoic acid supplementation improves inflammatory and antioxidant markers of patients with acute ischemic stroke: A double-blind, randomized controlled clinical trial. Nutrition and Food Science. https://doi.org/10.1108/NFS-07-2019-0237.
Schimidt, H. L., Vieira, A., Altermann, C., Martins, A., Sosa, P., Santos, F. W., … Carpes, F. P. (2014). Memory deficits and oxidative stress in cerebral ischemia-reperfusion: Neuroprotective role of physical exercise and green tea supplementation. Neurobiology of Learning and Memory, 114, 242-250. https://doi.org/10.1016/j.nlm.2014.07.005.
Shichita, T., Ago, T., Kamouchi, M., Kitazono, T., Yoshimura, A., & Ooboshi, H. (2012). Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke. Journal of Neurochemistry, 123, 29-38. https://doi.org/10.1111/j.1471-4159.2012.07941.x.
Shiman, R., Akino, M., & Kaufman, S. (1971). Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. The Journal of Biological Chemistry, 246(5), 1330-1340. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5545077.
Shirley, R., Ord, E., & Work, L. (2014). Oxidative stress and the use of antioxidants in stroke. Antioxidants, 3(3), 472-501. https://doi.org/10.3390/antiox3030472.
Singh, D. P., & Chopra, K. (2013). Verapamil augments the neuroprotectant action of berberine in rat model of transient global cerebral ischemia. European Journal of Pharmacology, 720(1-3), 98-106. https://doi.org/10.1016/j.ejphar.2013.10.043.
Stanimirovic, D. B., Ball, R., Small, D. L., & Muruganandam, A. (1999). Developmental regulation of glutamate transporters and glutamine synthetase activity in astrocyte cultures differentiated in vitro. International Journal of Developmental Neuroscience, 17(3), 173-184. https://doi.org/10.1016/s0736-5748(99)00028-3.
Sunil, A. G., Kesavanarayanan, K. S., Kalaivani, P., Sathiya, S., Ranju, V., Priya, R. J., … Babu, C. S. (2011). Total oligomeric flavonoids of Cyperus rotundus ameliorates neurological deficits, excitotoxicity and behavioral alterations induced by cerebral ischemic-reperfusion injury in rats. Brain Research Bulletin, 84(6), 394-405. https://doi.org/10.1016/j.brainresbull.2011.01.008.
Surapaneni, S., Prakash, T., Ansari, A., & Goli, D. (2017). Neuroprotective effect of Clerodendron glandulosum against acute transient ischemia reperfusion cerebral injury in rats. Journal of Neurology and Neurorehabilitation Research, 2(1), 14-20. https://doi.org/10.35841/neurology-neurorehabilitation.2.1.14-20.
Svoboda, P., & Mosinger, B. (1981). Catecholamines and the brain microsomal Na, K-adenosinetriphosphatase-I. Protection against lipoperoxidative damage. Biochemical Pharmacology, 30(5), 427-432. https://doi.org/10.1016/0006-2952(81)90626-2.
van der Zijden, T., Mondelaers, A., Yperzeele, L., Voormolen, M., & Parizel, P. M. (2019). Current concepts in imaging and endovascular treatment of acute ischemic stroke: Implications for the clinician. Insights into Imaging, 10(1), 64https://doi.org/10.1186/s13244-019-0744-4.
Varshney, R., & Kale, R. K. (1990). Effects of Calmodulin Antagonists on Radiation-induced Lipid Peroxidation in Microsomes. International Journal of Radiation Biology, 58(5), 733-743. https://doi.org/10.1080/09553009014552121.
Wasay, M., Khatri, I. A., & Kaul, S. (2014). Stroke in South Asian countries. Nature Reviews Neurology. Nature Publishing Group. 10(3), 135-143. https://doi.org/10.1038/nrneurol.2014.13.
Weinreb, O., Amit, T., Bar-Am, O., & Youdim, M. B. H. (2016). Neuroprotective effects of multifaceted hybrid agents targeting MAO, cholinesterase, iron and β-amyloid in ageing and Alzheimer’s disease. British Journal of Pharmacology, 173, 2080-2094. https://doi.org/10.1111/bph.13318.
Worthington Biochemical Corporation (2017). Lactate Dehydrogenase Assay. Worthington Enzyme Manual. Retrieved from http://www.worthingtonbiochem.com/ldh/assay.html.
Yang, J. L., Mukda, S., & Chen, S. D. (2018). Diverse roles of mitochondria in ischemic stroke. Redox Biology. Elsevier B.V. 16, 263-275. https://doi.org/10.1016/j.redox.2018.03.002.
Zou, J., Wang, Y. X., Dou, F. F., Lü, H. Z., Ma, Z. W., Lu, P. H., & Xu, X. M. (2010). Glutamine synthetase down-regulation reduces astrocyte protection against glutamate excitotoxicity to neurons. Neurochemistry International, 56(4), 577-584. https://doi.org/10.1016/j.neuint.2009.12.021.
Contributed Indexing:
Keywords: cerebral ischemia/reperfusion; health supplement; neurochemical dysfunction; neuroprotection; nutraceutical; stroke
Entry Date(s):
Date Created: 20200703 Date Completed: 20210708 Latest Revision: 20210708
Update Code:
20240105
DOI:
10.1111/jfbc.13351
PMID:
32614085
Czasopismo naukowe
The effect of a multicomponent nutraceutical on cerebral ischemia/reperfusion injury in male Wistar rats was investigated. Animals were administered with the nutraceutical, Trévo™, for 7 days before 30 min of bilateral common carotid artery occlusion-induced cerebral ischemia and 24 hr of reperfusion. Behavioral assessment, biochemical estimations in the brain cortex, striatum, and hippocampus, and hippocampal histopathological evaluation were carried out after treatments. Results showed that ischemia/reperfusion-induced motor and cognitive deficits were abated in rats pretreated with Trévo™. Additionally, prophylaxis with Trévo™ blunted ischemia/reperfusion-induced redox stress, proinflammatory events, disturbances in neurotransmitter metabolism, mitochondrial dysfunction, and histoarchitectural aberrations in the discreet brain regions. In summary, supplementation with Trévo™ provided neuroprotection to rats against transient cerebral ischemia/reperfusion injury and could be explored as a promising approach in stroke prevention. PRACTICAL APPLICATIONS: There is a worldwide increase in the incidence of cerebral ischemia or stroke. Although an advanced health care system and effective control of risk factors have led to the declining incidence in developed nations, a definitive cure for stroke remains elusive and the situation is growing worse in developing nations. The results of the present study revealed that supplementation with Trévo™ ameliorated neurobehavioral, neurochemical, and histopathological consequences of brain ischemia/reperfusion injury and could, therefore, be beneficial in stroke prevention and management.
(© 2020 Wiley Periodicals LLC.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies