Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Single-cell analyses and machine learning define hematopoietic progenitor and HSC-like cells derived from human PSCs.

Tytuł:
Single-cell analyses and machine learning define hematopoietic progenitor and HSC-like cells derived from human PSCs.
Autorzy:
Fidanza A; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
Stumpf PS; Joint Research Center for Computational Biomedicine, Uniklinik Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.
Ramachandran P; Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.
Tamagno S; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
Babtie A; Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom; and.
Lopez-Yrigoyen M; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
Taylor AH; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
Easterbrook J; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
Henderson BEP; Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.
Axton R; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
Henderson NC; Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.
Medvinsky A; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
Ottersbach K; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
Romanò N; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
Forrester LM; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
Źródło:
Blood [Blood] 2020 Dec 17; Vol. 136 (25), pp. 2893-2904.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2021- : [New York] : Elsevier
Original Publication: New York, Grune & Stratton [etc.]
MeSH Terms:
Antigens, Differentiation*/biosynthesis
Antigens, Differentiation*/genetics
Hematopoietic Stem Cells*/cytology
Hematopoietic Stem Cells*/metabolism
Machine Learning*
Pluripotent Stem Cells*/cytology
Pluripotent Stem Cells*/metabolism
RNA-Seq*
Single-Cell Analysis*
Fetus/cytology ; Fetus/metabolism ; Gene Expression Regulation ; Humans ; Liver/cytology ; Liver/metabolism
References:
Nature. 2019 Oct;574(7778):365-371. (PMID: 31597962)
FEBS Lett. 2016 Nov;590(22):3965-3974. (PMID: 27790707)
Nat Cell Biol. 2017 Apr;19(4):271-281. (PMID: 28319093)
EMBO J. 2004 Feb 25;23(4):969-79. (PMID: 14765120)
Stem Cells. 2017 Apr;35(4):886-897. (PMID: 28026072)
Cell. 1996 Sep 20;86(6):897-906. (PMID: 8808625)
Dev Cell. 2009 Dec;17(6):755-73. (PMID: 20059947)
Stem Cell Reports. 2014 Sep 9;3(3):489-501. (PMID: 25241746)
Blood. 2015 Apr 23;125(17):2641-8. (PMID: 25762177)
Nat Commun. 2019 Feb 20;10(1):881. (PMID: 30787325)
J Exp Med. 2017 Dec 4;214(12):3731-3751. (PMID: 29093060)
Prostate. 2014 May;74(7):689-701. (PMID: 24619958)
Blood. 2019 Feb 28;133(9):927-939. (PMID: 30622121)
PLoS One. 2016 Jan 05;11(1):e0146201. (PMID: 26731108)
J Exp Med. 2011 Nov 21;208(12):2417-27. (PMID: 22042975)
Cell Syst. 2017 Sep 27;5(3):251-267.e3. (PMID: 28957658)
J Biol Chem. 2010 Dec 17;285(51):40252-65. (PMID: 20940306)
Stem Cell Res. 2014 Jan;12(1):24-35. (PMID: 24141110)
Br J Haematol. 2016 Jun;173(5):671-9. (PMID: 26996518)
Stem Cell Reports. 2018 Nov 13;11(5):1061-1074. (PMID: 30449319)
Nat Methods. 2017 Sep;14(9):865-868. (PMID: 28759029)
Nat Commun. 2015 Aug 18;6:8040. (PMID: 26282601)
Blood. 2006 Sep 15;108(6):2095-105. (PMID: 16757688)
Blood. 2012 Apr 5;119(14):3226-35. (PMID: 22308291)
Nat Commun. 2016 Apr 07;7:11208. (PMID: 27052461)
Cell Stem Cell. 2010 Oct 8;7(4):532-44. (PMID: 20887958)
Science. 2012 Apr 6;336(6077):86-90. (PMID: 22442384)
Development. 1998 Nov;125(22):4575-83. (PMID: 9778515)
Oncogene. 1998 Nov 26;17(21):2799-803. (PMID: 9840944)
Science. 2016 Sep 9;353(6304):. (PMID: 27492475)
Stem Cell Reports. 2014 Mar 27;2(4):449-56. (PMID: 24749070)
Nat Methods. 2017 Oct;14(10):979-982. (PMID: 28825705)
Cell Stem Cell. 2008 Dec 4;3(6):625-36. (PMID: 19041779)
Nat Biotechnol. 2016 Nov;34(11):1168-1179. (PMID: 27748754)
Nat Biotechnol. 2014 Jun;32(6):554-61. (PMID: 24837661)
Cell Discov. 2018 Jul 3;4:34. (PMID: 29977598)
EMBO J. 1997 Jun 2;16(11):3145-57. (PMID: 9214632)
Blood. 2012 Jun 14;119(24):5706-14. (PMID: 22431573)
J Exp Med. 2018 Dec 3;215(12):2994-3005. (PMID: 30409784)
Cell Rep. 2015 Jun 30;11(12):1892-904. (PMID: 26095363)
Development. 1999 Nov;126(22):5073-84. (PMID: 10529424)
Nat Biotechnol. 2018 Jun;36(5):411-420. (PMID: 29608179)
Cell Res. 2019 Nov;29(11):881-894. (PMID: 31501518)
Blood. 2009 Dec 17;114(26):5279-89. (PMID: 19858498)
Cell. 2015 Dec 17;163(7):1663-77. (PMID: 26627738)
Cell Rep. 2017 Apr 4;19(1):10-19. (PMID: 28380349)
Nat Commun. 2018 Sep 7;9(1):3699. (PMID: 30194428)
Nat Commun. 2020 Jan 29;11(1):586. (PMID: 31996681)
Stem Cells. 2018 Feb;36(2):206-217. (PMID: 29139170)
Dev Dyn. 2003 Nov;228(3):323-36. (PMID: 14579373)
Nat Methods. 2016 Oct;13(10):845-8. (PMID: 27571553)
Philos Trans R Soc Lond B Biol Sci. 2018 Jul 5;373(1750):. (PMID: 29786554)
Nat Commun. 2016 Mar 08;7:10784. (PMID: 26952187)
Exp Hematol. 2002 Jun;30(6):537-45. (PMID: 12063020)
Cell Syst. 2017 Sep 27;5(3):268-282.e7. (PMID: 28957659)
Nat Commun. 2018 Oct 17;9(1):4315. (PMID: 30333494)
Genome Biol. 2019 Mar 19;20(1):59. (PMID: 30890159)
Blood. 2007 Feb 15;109(4):1433-41. (PMID: 17062726)
Development. 1999 Feb;126(4):793-803. (PMID: 9895326)
Blood. 2001 Apr 1;97(7):1982-9. (PMID: 11264162)
Genome Biol. 2018 Apr 5;19(1):47. (PMID: 29622030)
Cell Stem Cell. 2014 Jan 2;14(1):94-106. (PMID: 24388174)
Nature. 2018 Jan 11;553(7687):212-216. (PMID: 29323290)
Grant Information:
MR/R018081/1 United Kingdom MRC_ Medical Research Council; MR/K017047/1 United Kingdom MRC_ Medical Research Council; ETM/432 United Kingdom CSO_ Chief Scientist Office; MR/L018160/1 United Kingdom MRC_ Medical Research Council; MC_PC_15078 United Kingdom MRC_ Medical Research Council; United Kingdom WT_ Wellcome Trust; MR/N008340/1 United Kingdom MRC_ Medical Research Council; BB/N011597/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; S002219/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; MR/K001744/1 United Kingdom MRC_ Medical Research Council; BB/J004243/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
Substance Nomenclature:
0 (Antigens, Differentiation)
Entry Date(s):
Date Created: 20200703 Date Completed: 20210406 Latest Revision: 20240207
Update Code:
20240207
PubMed Central ID:
PMC7862875
DOI:
10.1182/blood.2020006229
PMID:
32614947
Czasopismo naukowe
Hematopoietic stem and progenitor cells (HSPCs) develop in distinct waves at various anatomical sites during embryonic development. The in vitro differentiation of human pluripotent stem cells (hPSCs) recapitulates some of these processes; however, it has proven difficult to generate functional hematopoietic stem cells (HSCs). To define the dynamics and heterogeneity of HSPCs that can be generated in vitro from hPSCs, we explored single-cell RNA sequencing (scRNAseq) in combination with single-cell protein expression analysis. Bioinformatics analyses and functional validation defined the transcriptomes of naïve progenitors and erythroid-, megakaryocyte-, and leukocyte-committed progenitors, and we identified CD44, CD326, ICAM2/CD9, and CD18, respectively, as markers of these progenitors. Using an artificial neural network that we trained on scRNAseq derived from human fetal liver, we identified a wide range of hPSC-derived HSPCs phenotypes, including a small group classified as HSCs. This transient HSC-like population decreased as differentiation proceeded, and was completely missing in the data set that had been generated using cells selected on the basis of CD43 expression. By comparing the single-cell transcriptome of in vitro-generated HSC-like cells with those generated within the fetal liver, we identified transcription factors and molecular pathways that can be explored in the future to improve the in vitro production of HSCs.
(© 2020 by The American Society of Hematology.)
Comment in: Blood. 2020 Dec 17;136(25):2845-2847. (PMID: 33331929)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies