Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Volatile organic compounds from leaf litter decomposition alter soil microbial communities and carbon dynamics.

Tytuł:
Volatile organic compounds from leaf litter decomposition alter soil microbial communities and carbon dynamics.
Autorzy:
McBride SG; Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA.
Choudoir M; Cooperative Institute for Research in Environmental Studies (CIRES), University of Colorado Boulder, Boulder, Colorado, 80309, USA.
Fierer N; Cooperative Institute for Research in Environmental Studies (CIRES), University of Colorado Boulder, Boulder, Colorado, 80309, USA.; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA.
Strickland MS; Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, 83844, USA.
Źródło:
Ecology [Ecology] 2020 Oct; Vol. 101 (10), pp. e03130. Date of Electronic Publication: 2020 Sep 22.
Typ publikacji:
Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Publication: Washington, DC : Ecological Society of America
Original Publication: Brooklyn, NY : Brooklyn Botanical Garden
MeSH Terms:
Microbiota*
Volatile Organic Compounds*
Carbon ; Plant Leaves ; Soil ; Soil Microbiology
References:
Aber, J. D., J. M. Melillo, and C. A. McClaugherty. 1990. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany 68:2201-2208.
Adamczyk, S., B. Adamczyk, V. Kitunen, and A. Smolander. 2015. Monoterpenes and higher terpenes may inhibit enzyme activities in boreal forest soil. Soil Biology and Biochemistry 87:59-66.
Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439-449.
Amaral, J. A., A. Ekins, S. R. Richards, and R. Knowles. 1998. Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture. Applied and Environmental Microbiology 64:520-525.
Asensio, D., J. C. Yuste, S. Mattana, À. Ribas, J. Llusià, and J. Peñuelas. 2012. Litter VOCs induce changes in soil microbial biomass C and N and largely increase soil CO2 efflux. Plant and Soil 360:163-174.
Beesch, S. C. 1952. Acetone-butanol fermentation of sugars. Industrial & Engineering Chemistry 44:1677-1682.
Binkley, D., C. Giardina. 1998. Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry 42:89-106.
Bitas, V., H.-S. Kim, J. W. Bennett, and S. Kang. 2013. Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Molecular Plant-Microbe Interactions 26:835-843.
Bradford, M. A., B. Berg, D. S. Maynard, W. R. Wieder, and S. A. Wood. 2016. Understanding the dominant controls on litter decomposition. Journal of Ecology 104:229-238.
Bradford, M. A., A. D. Keiser, C. A. Davies, C. A. Mersmann, and M. S. Strickland. 2013. Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry 113:271-281.
Chistoserdova, L., M. G. Kalyuzhnaya, and M. E. Lidstrom. 2009. The expanding world of methylotrophic metabolism. Annual Review of Microbiology 63:477-499.
Cotrufo, M. F., J. L. Soong, A. J. Horton, E. E. Campbell, M. L. Haddix, D. H. Wall, and W. J. Parton. 2015. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience 8:776.
Cotrufo, M. F., M. D. Wallenstein, C. M. Boot, K. Denef, and E. Paul. 2013. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology 19:988-995.
Fierer, N., J. W. Leff, B. J. Adams, U. N. Nielsen, S. T. Bates, C. L. Lauber, S. Owens, J. A. Gilbert, D. H. Wall, and J. G. Caporaso. 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America 109:21390-21395.
Fierer, N., and J. P. Schimel. 2003. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Science Society of America Journal 67:798-805.
Giesler, R., M. N. Högberg, B. W. Strobel, A. Richter, A. Nordgren, and P. Högberg. 2007. Production of dissolved organic carbon and low-molecular weight organic acids in soil solution driven by recent tree photosynthate. Biogeochemistry 84:1-12.
Gray, C., D. Helmig, and N. Fierer. 2015. Bacteria and fungi associated with isoprene consumption in soil. Elementa 3:000053.
Gray, C. M., and N. Fierer. 2012. Impacts of nitrogen fertilization on volatile organic compound emissions from decomposing plant litter. Global Change Biology 18:739-748.
Gray, C. M., R. K. Monson, and N. Fierer. 2010. Emissions of volatile organic compounds during the decomposition of plant litter. Journal of Geophysical Research 115:1-9.
Gray, C. M., R. K. Monson, and N. Fierer. 2014. Biotic and abiotic controls on biogenic volatile organic compound fluxes from a subalpine forest floor. Journal of Geophysical Research-Biogeosciences 119:547-556.
Hobbie, S. E. 1992. Effects of plant species on nutrient cycling. Trends in Ecology & Evolution 7:336-339.
Ineson, P., M. F. Cotrufo, R. Bol, D. D. Harkness, and H. Blum. 1996. Quantification of soil carbon inputs under elevated CO2: C3 plants in a C4 soil. Plant and Soil 187:345-350.
Joly, F.-X., S. Coq, M. Coulis, J. Nahmani, and S. Hättenschwiler. 2018. Litter conversion into detritivore faeces reshuffles the quality control over C and N dynamics during decomposition. Functional Ecology 32:2605-2614.
Kalbitz, K., and K. Kaiser. 2003. Ecological aspects of dissolved organic matter in soils. Geoderma 113:177-178.
Lang, S. Q., S. M. Bernasconi, and G. L. Früh-Green. 2012. Stable isotope analysis of organic carbon in small (µg C) samples and dissolved organic matter using a GasBench preparation device. Rapid Communications in Mass Spectrometry 26:9-16.
Leff, J. W., and N. Fierer. 2008. Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biology and Biochemistry 40:1629-1636.
Marco, A., J. L. Navarro, and M. Flores. 2006. The influence of nitrite and nitrate on microbial, chemical and sensory parameters of slow dry fermented sausage. Meat Science 73:660-673.
McBride, S. G., E. D. Osburn, J. E. Barrett, and M. S. Strickland. 2019. Volatile methanol and acetone additions increase labile soil carbon and inhibit nitrification. Biogeochemistry 145:127-140.
McGuire, K. L. et al 2013. Digging the New York City skyline: soil fungal communities in green roofs and city parks. PLoS One 8:e58020.
Melillo, J. M., J. D. Aber, and J. F. Muratore. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621-626.
Oksanen, J. F., G. Blanchet, M. Friendly, R. Kindt, Legendre, P., D. McGlinn, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, and H. Wagner. 2019. vegan: Community Ecology Package. R package version 2.5-4. https://CRAN.R-project.org/package=vegan.
Osburn, E. D., S. G. McBride, F. O. Aylward, B. D. Badgley, B. D. Strahm, J. D. Knoepp, and J. E. Barrett. 2019. Soil bacterial and fungal communities exhibit distinct long-term responses to disturbance in temperate forests. Frontiers in Microbiology 10:1-14.
Owen, S. M., S. Clark, M. Pompe, and K. T. Semple. 2007. Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of Populus tremula. FEMS Microbiology Letters 268:34-39.
Paavolainen, L., V. Kitunen, and A. Smolander. 1998. Inhibition of nitrification in forest soil by monoterpenes. Plant and Soil 205:147-154.
Paul, E. A., H. P. Collins, and S. W. Leavitt. 2001. Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma 104:239-256.
Phillips, R. P., Y. Erlitz, R. Bier, and E. S. Bernhardt. 2008. New approach for capturing soluble root exudates in forest soils. Functional Ecology 22:990-999.
R Development Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Ramirez, K. S., C. L. Lauber, and N. Fierer. 2010. Microbial consumption and production of volatile organic compounds at the soil-litter interface. Biogeochemistry 99:97-107.
Schmidt, R., V. Cordovez, W. de Boer, J. Raaijmakers, and P. Garbeva. 2015. Volatile affairs in microbial interactions. The ISME Journal 9:2329-2335.
Schulz-Bohm, K., S. Geisen, E. R. J. Wubs, C. Song, W. de Boer, and P. Garbeva. 2017. The prey’s scent-Volatile organic compound mediated interactions between soil bacteria and their protist predators. ISME Journal 11:817-820.
Smolander, A., R. A. Ketola, T. Kotiaho, S. Kanerva, K. Suominen, and V. Kitunen. 2006. Volatile monoterpenes in soil atmosphere under birch and conifers: effects on soil N transformations. Soil Biology and Biochemistry 38:3436-3442.
Sokol, N. W., and M. A. Bradford. 2019. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience 12:46-53.
Soong, J. L., M. L. Vandegehuchte, A. J. Horton, U. N. Nielsen, K. Denef, E. A. Shaw, C. M. de Tomasel, W. Parton, D. H. Wall, and M. F. Cotrufo. 2016. Soil microarthropods support ecosystem productivity and soil C accrual: evidence from a litter decomposition study in the tallgrass prairie. Soil Biology and Biochemistry 92:230-238.
Strickland, M. S., C. Lauber, N. Fierer, and M. A. Bradford. 2009. Testing the functional significance of microbial community composition. Ecology 90:441-451.
Strickland, M. S., K. Wickings, and M. A. Bradford. 2012. The fate of glucose, a low molecular weight compound of root exudates, in the belowground foodweb of forests and pastures. Soil Biology and Biochemistry 49:23-29.
Trombetta, D., F. Castelli, M. G. Sarpietro, V. Venuti, M. Cristani, C. Daniele, A. Saija, G. Mazzanti, and G. Bisignano. 2005. Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy 49:2474-2478.
Warneke, C., T. Karl, H. Judmaier, A. Hansel, A. Jordan, W. Lindinger, and P. J. Crutzen. 1999. Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: significance for atmospheric HOx chemistry. Global Biogeochemical Cycles 13:9-17.
Wheatley, R. E. 2002. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie van Leeuwenhoek 81:357-364.
Yuan, J., M. Zhao, R. Li, Q. Huang, W. Raza, C. Rensing, and Q. Shen. 2017. Microbial volatile compounds alter the soil microbial community. Environmental Science and Pollution Research 24:22485-22493.
Zeng, J., X. Liu, L. Song, X. Lin, H. Zhang, C. Shen, and H. Chu. 2016. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology and Biochemistry 92:41-49.
Grant Information:
DEB 1556753 National Science Foundation
Contributed Indexing:
Keywords: VOC; ammonium; carbon cycle; carbon sequestration; microbial biomass; microbial diversity; mineral associated organic matter; nitrate; particulate organic matter; stable isotope probing; target gene sequencing
Molecular Sequence:
figshare 10.6084/m9.figshare.12323825.v1; 10.6084/m9.figshare.6882899.v1
Substance Nomenclature:
0 (Soil)
0 (Volatile Organic Compounds)
7440-44-0 (Carbon)
Entry Date(s):
Date Created: 20200705 Date Completed: 20210223 Latest Revision: 20210223
Update Code:
20240105
DOI:
10.1002/ecy.3130
PMID:
32621285
Czasopismo naukowe
Investigations into the transfer of carbon from plant litter to underlying soil horizons have primarily focused on the leaching of soluble carbon from litter belowground or the mixing of litter directly into soil. However, previous work has largely ignored the role of volatile organic compounds (VOCs) released during litter decomposition. Unlike most leaf carbon, these litter-derived VOCs are able to diffuse directly into the soil matrix. Here, we used a 99-d microcosm experiment to track VOCs produced during microbial decomposition of 13 C-labeled leaf litter into soil carbon fractions where the decomposing litters were only sharing headspace with the soil samples, thus preventing direct contact and aqueous movement of litter carbon. We also determined the effects of these litter-derived VOCs on soil microbial community structure. We demonstrated that the litter VOCs contributed to all measured soil carbon pools. Specifically, VOC-derived carbon accounted for 2.0, 0.61, 0.18, and 0.08% of carbon in the microbial biomass, dissolved organic matter, mineral-associated organic matter, and particulate organic matter pools, respectively. We also show that litter-derived VOCs can affect soil bacterial and fungal community diversity and composition. These findings highlight the importance of an underappreciated pathway where VOCs alter soil microbial communities and carbon dynamics.
(© 2020 by the Ecological Society of America.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies