Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Toxicology of tramadol following chronic exposure based on metabolomics of the cerebrum in mice.

Tytuł:
Toxicology of tramadol following chronic exposure based on metabolomics of the cerebrum in mice.
Autorzy:
Xia W; School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110014, China.
Liu G; School of Fundamental Sciences, China Medical University, Shenyang, 110014, China.
Shao Z; School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110014, China.
Xu E; School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110014, China.
Yuan H; School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110014, China.
Liu J; School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110014, China.
Gao L; School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110014, China. .
Źródło:
Scientific reports [Sci Rep] 2020 Jul 07; Vol. 10 (1), pp. 11130. Date of Electronic Publication: 2020 Jul 07.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Analgesics, Opioid/*toxicity
Cerebrum/*drug effects
Tramadol/*toxicity
Analgesics, Opioid/administration & dosage ; Animals ; Biomarkers/analysis ; Cerebrum/chemistry ; Cerebrum/metabolism ; Male ; Malondialdehyde/analysis ; Metabolomics ; Mice ; Superoxide Dismutase/metabolism ; Tramadol/administration & dosage
References:
Lee, C. R., McTavish, D. & Sorkin, E. M. Tramadol: a preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in acute and chronic pain states. Drugs. 46(2), 313–340 (1993). (PMID: 10.2165/00003495-199346020-00008)
Munro, G. et al. The novel compound (+/−)-1-[10-((E)-3-Phenyl-allyl)-3,10-diaza-bicyclo[4,3,1]dec-3-yl]-propan-1-one(NS7051) attenuates nociceptive transmission in animal models of experimental pain; a pharmacological comparison with the combined mu-opioid receptor agonist and monoamine reuptake inhibitor tramadol. Neuropharmacology 54(2), 331–343 (2008). (PMID: 10.1016/j.neuropharm.2007.10.005)
Kimura, M., Obata, H. & Saito, S. Antihypersensitivity effects of tramadol hydrochloride in a rat model of postoperative pain. Anesth. Analg. 115(2), 443–449 (2012). (PMID: 10.1213/ANE.0b013e31825683c3)
Hanna, M. M. & Ayman, M. M. Chronic exposure to the opioid tramadol induces oxidative damage, inflammation and apoptosis, and alters cerebral monoamine neurotransmitters in rats. Biomed. Pharmacother. 110, 239–247 (2019). (PMID: 10.1016/j.biopha.2018.11.141)
Chi, X. et al. Comparison of patient-controlled intravenous analgesia with sufentanil versus tramadol in post-cesarean section pain management and lactation after general anesthesia- a prospective, randomized, double-blind, controlled study. J. Pain Res. 10, 1521 (2017). (PMID: 10.2147/JPR.S137799)
Nakhaei, A. M., Iri, A. & Akhoondi, S. The definition of recurrent shoulder dislocation in tramadol induced seizure patients. Med. J. Islam. Repub. Iran. 29, 298 (2015).
Shubhakaran, K. P. & Khichar, R. J. Tramadol side effects: seizure and hypoglycemia. Anesth. Essays Res. 10(3), 685–686 (2016). (PMID: 10.4103/0259-1162.191110)
Beakley, B. D., Kaye, A. M. & Kaye, A. D. Tramadol, pharmacology, side effects, and serotonin syndrome: a review. Pain Phys. 18, 395–400 (2015).
Makunts, T., Andrew, U., Atayee, R. S. & Abagyan, R. Retrospective analysis reveals significant association of hypoglycemia with tramadol and methadone in contrast to other opioids. Sci. Rep. 9(1), 12490 (2019). (PMID: 10.1038/s41598-019-48955-y)
Thiels, C. A., Habermann, E. B. & Hooten, W. M. Chronic use of tramadol after acute pain episode: cohort study. BMJ 365, I1849. https://doi.org/10.1136/bmj.l1849 (2019). (PMID: 10.1136/bmj.l1849)
Miotto, K. et al. Trends in tramadol: pharmacology, metabolism, and misuse. Anesth. Analg. 124(1), 44–51 (2017). (PMID: 10.1213/ANE.0000000000001683)
Dobscha, S. K., Morasco, B. J., Duckart, J. P., Macey, T. & Deyo, R. A. Correlates of prescription opioid initiation and long-term opioid use in veterans with persistent pain. Clin. J. Pain. 29, 102–108 (2013). (PMID: 10.1097/AJP.0b013e3182490bdb)
Lev, R., Lee, O. & Petro, S. Who is prescribing controlled medications to patients who die of prescription drug abuse?. Am. J. Emerg. Med. 34, 30–35 (2016). (PMID: 10.1016/j.ajem.2015.09.003)
Krebs, E. E., Gravely, A. & Nugent, S. Effect of opioid vs nonopioid medications on pain-related function in patients with chronic back pain or hip or knee osteoarthritis pain: the SPACE randomized clinical trial. JAMA 319, 872–882 (2018). (PMID: 10.1001/jama.2018.0899)
Goldansaz, S. A. et al. Livestock metabolomics and the livestock metabolome: a systematic review. PLoS ONE 12(5), e0177675 (2017). (PMID: 10.1371/journal.pone.0177675)
Wang, Z. et al. Serum metabolomics in rats after acute paraquat poisoning. Biol. Pharm. Bull. 38(7), 1049–1053 (2015). (PMID: 10.1248/bpb.b15-00147)
Xiao, S. & Zhou, L. Gastric cancer: metabolic and metabolomics perspectives (Review). Int. J. Oncol. 51(1), 5–17 (2017). (PMID: 10.3892/ijo.2017.4000)
Gao, L. et al. Serum metabolomics in mice after paraquat posioning. Mol. Cell. Toxicol. 15, 453–458 (2019). (PMID: 10.1007/s13273-019-0049-1)
Miura, M., Saino-Saito, S., Masuda, M., Kobayashi, K. & Aosaki, T. Compartment-specifific modulation of GABAergic synaptic transmission by mu-opioid receptor in the mouse striatum with green fluorescent protein-expressing dopamine islands. J. Neurosci. 27, 9721–9728 (2007). (PMID: 10.1523/JNEUROSCI.2993-07.2007)
Kind, T. et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81(24), 10038–10048 (2009). (PMID: 10.1021/ac9019522)
Bonneh-Barkay, D., Reaney, S. H., Langston, W. J. & Di Monte, D. A. Redox cycling of the herbicide paraquat in microglial cultures. Brain Res. Mol. Brain Res. 134, 52–56 (2005). (PMID: 10.1016/j.molbrainres.2004.11.005)
Broadhurst, D. I. & Kell, D. B. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2, 171–196 (2006). (PMID: 10.1007/s11306-006-0037-z)
Lin, W. H. et al. Seizure-induced 5-HT release and chronic impairment of serotonergic function in rats. Neurosci. Lett. 534, 1–6 (2013). (PMID: 10.1016/j.neulet.2012.12.007)
Gao, Y. et al. Pharmaco metabolomic prediction of individual differences of gastrointestinal toxicity complicating myelosuppression in rats induced by irinotecan. Acta Pharm. Sin. B. 9, 157–166 (2019). (PMID: 10.1016/j.apsb.2018.09.006)
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000). (PMID: 10.1093/nar/28.1.27)
Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590–D595 (2019). (PMID: 10.1093/nar/gky962)
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019). (PMID: 10.1002/pro.3715)
Boulesteix, A. L. & Strimmer, K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Briefings Bioinform. 8, 32–44 (2017). (PMID: 10.1093/bib/bbl016)
Ali, T. et al. Genotoxicity and repair capability of Mus musculus DNA following the oral exposure to Tramadol. Saudi J. Biol. Sci. 27(1), 12–17. https://doi.org/10.1016/j.sjbs.2019.03.008 (2020). (PMID: 10.1016/j.sjbs.2019.03.00831889811)
Beyaz, S. G., Sonbahar, T., Bayar, F. & Erdem, A. F. Seizures associated with low-dose tramadol for chronic pain treatment. Anesth Essays Res. 10, 376–378 (2016). (PMID: 10.4103/0259-1162.177181)
Xu, W. Y. et al. 2-Aminoadipic acid protects against obesity and diabetes. J. Endocrinol. 243(2), 111–123 (2019). (PMID: 10.1530/JOE-19-0157)
Condorelli, R. A. et al. Myo-inositol as a male fertility molecule: speed them up!. Eur. Rev. Med. Pharmacol. Sci. 21(2), 30–35 (2017). (PMID: 28724176)
Onkenhout, W., Venizelos, V., van der Poel, P. F., van den Heuvel, M. P. & Poorthuis, B. J. Identification and quantification of intermediates of unsaturated fatty acid metabolism in plasma of patients with fatty acid oxidation disorders. Clin. Chem. 41(10), 1467–1474 (1995). (PMID: 10.1093/clinchem/41.10.1467)
Hassamal, S., Miotto, K., Dale, W. & Danovitch, I. Understanding the risk of serotonin syndrome and seizures. Am. J. Med. 131(11), 1382-e1. https://doi.org/10.1016/j.amjmed (2018). (PMID: 10.1016/j.amjmed)
Maitre, M. et al. Gamma-hydroxybutyric acid as a signaling molecule in brain. Alcohol. 20(3), 277–283 (2000). (PMID: 10.1016/S0741-8329(99)00092-0)
Azmy, S. M. et al. Does nicotine impact tramadol abuse? Insights from neurochemical and neurobehavioral changes in mice. Neurotoxicology. 67, 245–258 (2018). (PMID: 10.1016/j.neuro.2018.06.004)
Ide, S. et al. Mu opioid receptor-dependent and independent components in effects of tramadol. Neuropharmacology 51, 651–658 (2006). (PMID: 10.1016/j.neuropharm.2006.05.008)
Saboory, E. et al. Mechanisms of morphine enhancement of spontaneous seizure activity. Anesth. Analg. 105, 1729–1735 (2007). (PMID: 10.1213/01.ane.0000287675.15225.0b)
Frenk, H. Pro- and anticonvulsant actions of morphine and the endogenous opioids: involvement and interactions of multiple opiate and non-opiate systems. Brain Res. 287, 197–210 (1983). (PMID: 10.1016/0165-0173(83)90039-5)
Rehni, A. K., Singh, I. & Kumar, M. Tramadol-induced seizurogenic effect: a possible role of opioid-dependent γ-aminobutyric acid inhibitory pathway. Basic Clin. Pharmacol. Toxicol. 103, 262–266 (2008). (PMID: 10.1111/j.1742-7843.2008.00276.x)
Substance Nomenclature:
0 (Analgesics, Opioid)
0 (Biomarkers)
39J1LGJ30J (Tramadol)
4Y8F71G49Q (Malondialdehyde)
EC 1.15.1.1 (Superoxide Dismutase)
Entry Date(s):
Date Created: 20200709 Date Completed: 20201207 Latest Revision: 20210707
Update Code:
20240105
PubMed Central ID:
PMC7341866
DOI:
10.1038/s41598-020-67974-8
PMID:
32636435
Czasopismo naukowe
Tramadol is an opioid used as an analgesic for treating moderate or severe pain. The long-term use of tramadol can induce several adverse effects. The toxicological mechanism of tramadol abuse is unclear. Metabolomics is a very useful method for investigating the toxicology of drug abuse. We investigated the impact of chronic tramadol administration on the cerebrum of mice, focusing on the metabolites after tramadol administration. The mice received 20 or 50 mg/kg body weight tramadol dissolved in physiological saline daily for 5 weeks via oral gavage. Compared with the control group, the low dose tramadol group showed seven potential biomarkers, including gamma-hydroxybutyric acid, succinate semialdehyde, and methylmalonic acid, which were either up- or down-regulated. Compared with the control group, the high dose tramadol group showed ten potential biomarkers, including gamma-hydroxybutyric acid, glutamine, and O-phosphorylethanolamine, which were either up- or down-regulated. The up-regulated gamma-hydroxybutyric acid and the down-regulated succinate semialdehyde revealed that the neurotransmitter system was disrupted after tramadol abuse. Compared with the low dose tramadol group, there were twenty-nine potential biomarkers in the high dose tramadol group, mainly related to the pentose phosphate pathway and glycerophospholipid metabolism. In conclusion, metabolomics in the tramadol abuse group demonstrated that long-term tramadol abuse can result in oxidative damage, inflammation, and disruption of the GABA neurotransmitter system, which will help to elucidate the toxicology of tramadol abuse.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies