Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees.

Tytuł:
Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees.
Autorzy:
Anderegg LDL; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.; Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, 94304, USA.
Loy X; Department of Environmental Sciences, Emory University, Atlanta, GA, 30322, USA.
Markham IP; Wild Hope Collective, Davis, CA, 95616, USA.
Elmer CM; School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
Hovenden MJ; Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, TAS, 7005, Australia.
HilleRisLambers J; Department of Biology, University of Washington, Seattle, WA, 98195, USA.
Mayfield MM; School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia.; School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
Źródło:
The New phytologist [New Phytol] 2021 Feb; Vol. 229 (3), pp. 1375-1387. Date of Electronic Publication: 2020 Aug 13.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
MeSH Terms:
Ecosystem*
Trees*
Australia ; Phenotype ; Plant Leaves
References:
Ahrens CW, Andrew ME, Mazanec RA, Ruthrof KX, Challis A, Hardy G, Byrne M, Tissue DT, Rymer PD. 2019a. Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change. Ecology and Evolution 10: 232-248.
Ahrens CW, Mazanec RA, Paap T, Ruthrof KX, Challis A, Hardy G, Byrne M, Tissue DT, Rymer PD. 2019b. Adaptive variation for growth and resistance to a novel pathogen along climatic gradients in a foundation tree. Evolutionary Applications 12: 1178-1190.
Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S. 2010a. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology 24: 1192-1201.
Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S. 2010b. Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology 98: 604-613.
Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R et al. 2013. Potential for evolutionary responses to climate change - evidence from tree populations. Global Change Biology 19: 1645-1661.
Anderegg LDL, Berner LT, Badgley G, Sethi ML, Law BE, Hillerislambers J. 2018. Within-species patterns challenge our understanding of the leaf economics spectrum. Ecology Letters 21: 734-744.
Anderegg LD, HilleRisLambers J. 2015. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms. Global Change Biology 22: 1029-1045.
Baird AS, Anderegg LDL, Lacey ME, Hillerislambers J, Van Volkenburgh E. 2017. Comparative leaf growth strategies in response to low-water and low-light availability: variation in leaf physiology underlies variation in leaf mass per area in Populus tremuloides. Tree Physiology 37: 1140-1150.
Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1-48.
Blackman CJ, Aspinwall MJ, Tissue DT, Rymer PD. 2017. Genetic adaptation and phenotypic plasticity contribute to greater leaf hydraulic tolerance in response to drought in warmer climates. Tree Physiology 37: 583-592.
Bourne AE, Creek D, Peters JMR, Ellsworth DS, Choat B. 2017. Species climate range influences hydraulic and stomatal traits in Eucalyptus species. Annals of Botany 120: 123-133.
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12: 351-366.
Chevin L-M, Collins S, Lefèvre F. 2012. Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Functional Ecology 27: 967-979.
Davison ME, Tay F. 1989. Phenology of Eucalyptus marginata on sites infested with Phytophthory cinnamomi. Australian Journal of Botany 37: 193-206.
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC et al. 2016. The global spectrum of plant form and function. Nature 529: 167-171.
Fajardo A, Piper FI. 2010. Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. New Phytologist 189: 259-271.
Field CB. 1988. On the role of photosynthetic responses in constraining the habitat distribution of rainforest plants. Functional Plant Biology 15: 343-358.
Franks SJ, Weber JJ, Aitken SN. 2014. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evolutionary Applications 7: 123-139.
González-Zurdo P, Escudero A, Babiano J, García-Ciudad A, Mediavilla S. 2016. Costs of leaf reinforcement in response to winter cold in evergreen species. Tree Physiology 36: 273-286.
Grundy MJ, Rossel RAV, Searle RD, Wilson PL, Chen C, Gregory LJ. 2015. Soil and landscape grid of Australia. Soil Research 53: 835.
Heatwole H, Lowman MD, Donovan C, McCoy M. 1997. Phenology of leaf-flushing and macroarthropod abundances in canopies of Eucalyptus saplings. Selbyana 18: 200-214.
Hoffmann A, Merilä J. 1999. Heritable variation and evolution under favourable and unfavourable conditions. Trends in Ecology & Evolution 14: 96-101.
John GP, Scoffoni C, Buckley TN, Villar R, Poorter H, Sack L. 2017. The anatomical and compositional basis of leaf mass per area. Ecology Letters 20: 412-425.
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M. 2017. Data descriptor: climatologies at high resolution for the Earth’s landsurface areas. Nature Publishing Group 4: 170122.
Kovenock M, Swann ALS. 2018. Leaf trait acclimation amplifies simulated climate warming in response to elevated carbon dioxide. Global Biogeochemical Cycles 32: 1437-1448.
Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM. 2014. Community assembly, coexistence and the environmental filtering metaphorlmodel2: Model II Regression. R package. Functional Ecology 29: 592-599.
Kuznetsova A, Brockhoff PB, Christensen R. 2017. lmerTest Package: tests in linear mixed effects models. Journal of Statisitical Software 82: 1-12.
Laforest-Lapointe I, Martinez-Vilalta J, Retana J. 2014. Intraspecific variability in functional traits matters: case study of Scots pine. Oecologia 175: 1337-1348.
Legendre P. 2014. lmodel2: Model II Regression. R package v.1.7-3. [WWW document] URL https://CRAN.R-project.org/package=lmodel2.
Lemke IH, Kolb A, Diekmann MR. 2012. Region and site conditions affect phenotypic trait variation in five forest herbs. Acta Oecologica 39: 18-24.
Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S. 2010. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist 190: 709-723.
Li C, Wang K. 2003. Differences in drought responses of three contrasting Eucalyptus microtheca F. Muell. populations. Forest Ecology and Management 179: 377-385.
Li X, Blackman CJ, Choat B, Duursma RA, Rymer PD, Medlyn BE, Tissue DT. 2018a. Tree hydraulic traits are co-ordinated and strongly linked to climate-of-origin across a rainfall gradient. Plant, Cell & Environment 41: 646-660.
Li X, Blackman CJ, Choat B, Duursma RA, Rymer PD, Medlyn BE, Tissue DT. 2018b. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. Plant, Cell & Environment 41: 646-660.
Li X, Blackman CJ, Peters JMR, Choat B, Rymer PD, Medlyn BE, Tissue DT. 2019. More than iso/anisohydry: hydroscapes integrate plant water use and drought tolerance traits in 10 eucalypt species from contrasting climates. Functional Ecology 33: 1035-1049.
López R, Cano FJ, Choat B, Cochard H, Gil L. 2016. Plasticity in vulnerability to cavitation of Pinus canariensis occurs only at the driest end of an aridity gradient. Frontiers in Plant Science 7: 535.
Ma Z, Guo D, Xu X, Lu M, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO. 2018. Evolutionary history resolves global organization of root functional traits. Nature 555: 94-97.
MacArthur D. 1972. Geographical ecology: patterns in the distribution of species. New York, NY, USA: Harper & Row.
Martinez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen JFJ, Llorens P, Nikinmaa E, Nol A, Poyatos R et al. 2009. Hydraulic adjustment of Scots pine across Europe. New Phytologist 184: 353-364.
McLean EH, Prober SM, Stock WD, Steane DA, Potts BM, Vaillancourt RE, Byrne M. 2014. Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa. Plant, Cell & Environment 37: 1440-1451.
Mencuccini M, Grace J. 1995. Climate influences the leaf area/sapwood area ratio in Scots pine. Tree Physiology 15: 1-10.
Mencuccini M, Rosas T, Rowland L, Choat B, Cornelissen H, Jansen S, Kramer K, Lapenis A, Manzoni S, Niinemets U et al. 2019. Leaf economics and plant hydraulics drive leaf : wood area ratios. New Phytologist 224: 1544-1556.
Messier J, McGill BJ, Enquist BJ, Lechowicz MJ. 2017. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography 40: 685-697.
Messier J, Violle C, Enquist BJ, Lechowicz MJ, McGill BJ. 2018. Similarities and differences in intrapopulation trait correlations of co-occurring tree species: consistent water-use relationships amid widely different correlation patterns. American Journal of Botany 105: 1477-1490.
Molina-Montenegro MA, Naya DE. 2012. Latitudinal patterns in phenotypic plasticity and fitness-related traits: assessing the climatic variability hypothesis (CVH) with an invasive plant species. PLoS ONE 7: e47620.
Mooney HA, Ferrar PJ, Slatyer RO. 1978. Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus. Oecologia 36: 103-111.
Nabuurs GJ, van Putten B, Knippers TS, Mohren GMJ. 2008. Comparison of uncertainties in carbon sequestration estimates for a tropical and a temperate forest. Forest Ecology and Management 256: 237-245.
Niinemets U. 1999. Research review. Components of leaf dry mass per area-thickness and density-alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist 144: 35-47.
Niinemets U. 2016. Does the touch of cold make evergreen leaves tougher? Tree Physiology 36: 267-272.
O'Brien L. 2019. slga: Data access tools for the soil and landscape grid of Australia. R package v.1.1.0. [WWW document] URL https://CRAN.R-project.org/package=slga.
Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets U, Poorter H, Tosens T, Westoby M. 2017. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist 113: 1-17.
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167.
Pfautsch S, Harbusch M, Wesolowski A, Smith R, Macfarlane C, Tjoelker MG, Reich PB, Adams MA. 2016. Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecology Letters 19: 240-248.
Pfautsch S, Macfarlane C, Ebdon N, Meder R. 2012. Assessing sapwood depth and wood properties in Eucalyptus and Corymbia spp. using visual methods and near infrared spectroscopy (NIR). Trees 26: 963-974.
Pinheiro J, Bates D, DebRoy S, Sarkar D. 2019. nlme: Linear and Nonlinear Mixed Effects Models. R package v.3.1-140. [WWW document] URL https://CRAN.R-project.org/package=nlme.
Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182: 565-588.
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. 2011. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193: 30-50.
Pritzkow C, Williamson V, Szota C, Trouvé R, Arndt SK. 2019. Phenotypic plasticity and genetic adaptation of functional traits infuences infra-specific variation in hydraulic efficiency and safety. Tree Physiology 40: 215-229.
R Core Team. 2019. R: A language and environment for statistical computing. v.3.6.0. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.R-project.org/.
Reich PB. 2014. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology 102: 275-301.
Reich PB, Walters MB, Ellsworth DS. 1997. From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences, USA 94: 13730-13734.
Richardson SJ, Allen RB, Buxton RP, Easdale TA, Hurst JM, Morse CW, Smissen RD, Peltzer DA. 2013. Intraspecific Relationships among Wood Density, Leaf Structural traits and environment in four co-occurring species of Nothofagus in New Zealand. PLoS ONE 8: e58878.
Richter S, Kipfer T, Wohlgemuth T, Calderón Guerrero C, Ghazoul J, Moser B. 2011. Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia 169: 269-279.
Rosas T, Mencuccini M, Barba J, Cochard H, Saura-Mas S, Martinez-Vilalta J. 2019. Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient. New Phytologist 223: 632-646.
Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671-675.
Schulze E-D, Turner NC, Nicolle D, Schumacher J. 2006. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia. Tree Physiology 26: 479-492.
Schulze ED, Williams RJ, Farquhar GD, Schulze W, Langridge J, Miller JM, Walker BH. 1998. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Australian Journal of Plant Physiology 25: 413.
Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV et al. 2015. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology letters 18: 1406-1419.
Trugman AT, Anderegg LDL, Sperry JS, Wang Y, Venturas M, Anderegg WRL. 2019. Leveraging plant hydraulics to yield predictive and dynamic plant leaf allocation in vegetation models with climate change. Global Change Biology 25: 4008-4021.
Tyree MT, Ewers FW. 1991. The hydraulic architecture of trees and other woody plants. New Phytologist 119: 345-360.
Valladares F, Gianoli E, Gómez JM. 2007. Ecological limits to plant phenotypic plasticity. New Phytologist 176: 749-763.
Valladares F, Matesanz S, Guilhaumon F, Araújo MB, Balaguer L, Benito-Garzón M, Cornwell W, Gianoli E, van Kleunen M, Naya DE et al. 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters 17: 1351-1364.
Vilà-Cabrera A, Martinez-Vilalta J, Retana J. 2015. Functional trait variation along environmental gradients in temperate and Mediterranean trees. Global Ecology and Biogeography 24: 1377-1389.
Whitehead D, Jarvis PG. 1981. Coniferous forests and plantations. In: Kozlowski TT, ed. Woody plant communities. New York, NY, USA: Academic Press, 49-152.
Wright IJ, Reich PB, Westoby M, Ackerly DD, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.
Zobel BJ, Jett JB. 1995. Genetics of Wood Production. Berlin, Germany: Springer-Verlag.
Zolfaghar S, Villalobos-Vega R, Cleverly J, Eamus D. 2015. Co-ordination among leaf water relations and xylem vulnerability to embolism of Eucalyptus trees growing along a depth-to-groundwater gradient. Tree Physiology 35: 732-743.
Zolfaghar S, Villalobos-Vega R, Cleverly J, Zeppel M, Rumman R, Eamus D. 2014. The influence of depth-to-groundwater on structure and productivity of Eucalyptus woodlands. Australian Journal of Botany 62: 428.
Contributed Indexing:
Keywords: Eucalyptus; functional traits; intraspecific trait variation; trait variance; water availability gradient
Entry Date(s):
Date Created: 20200709 Date Completed: 20210514 Latest Revision: 20210514
Update Code:
20240105
DOI:
10.1111/nph.16795
PMID:
32638379
Czasopismo naukowe
Large intraspecific functional trait variation strongly impacts many aspects of communities and ecosystems, and is the medium upon which evolution works. Yet intraspecific trait variation is inconsistent and hard to predict across traits, species and locations. We measured within-species variation in leaf mass per area (LMA), leaf dry matter content (LDMC), branch wood density (WD), and allocation to stem area vs leaf area in branches (branch Huber value (HV)) across the aridity range of seven Australian eucalypts and a co-occurring Acacia species to explore how traits and their variances change with aridity. Within species, we found consistent increases in LMA, LDMC and WD and HV with increasing aridity, resulting in consistent trait coordination across leaves and branches. However, this coordination only emerged across sites with large climate differences. Unlike trait means, patterns of trait variance with aridity were mixed across populations and species. Only LDMC showed constrained trait variation in more xeric species and drier populations that could indicate limits to plasticity or heritable trait variation. Our results highlight that climate can drive consistent within-species trait patterns, but that patterns might often be obscured by the complex nature of morphological traits, sampling incomplete species ranges or sampling confounded stress gradients.
(© 2020 The Authors New Phytologist © 2020 New Phytologist Foundation.)
Comment in: New Phytol. 2021 Feb;229(3):1183-1185. (PMID: 33105042)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies