Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Interactions in multi-pattern Müllerian communities support origins of new patterns, false structures, imperfect resemblance and mimetic sexual dimorphism.

Tytuł:
Interactions in multi-pattern Müllerian communities support origins of new patterns, false structures, imperfect resemblance and mimetic sexual dimorphism.
Autorzy:
Motyka M; Laboratory of Diversity and Molecular Evolution, Palacky University, 17. Listopadu 50, 771 46, Olomouc, Czech Republic.
Bocek M; Laboratory of Diversity and Molecular Evolution, Palacky University, 17. Listopadu 50, 771 46, Olomouc, Czech Republic.
Kusy D; Laboratory of Diversity and Molecular Evolution, Palacky University, 17. Listopadu 50, 771 46, Olomouc, Czech Republic.
Bocak L; Laboratory of Diversity and Molecular Evolution, Palacky University, 17. Listopadu 50, 771 46, Olomouc, Czech Republic. .
Źródło:
Scientific reports [Sci Rep] 2020 Jul 08; Vol. 10 (1), pp. 11193. Date of Electronic Publication: 2020 Jul 08.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Biological Evolution*
Biological Mimicry*
Sex Characteristics*
Coleoptera/*physiology
Animal Distribution ; Animals ; Borneo ; Coleoptera/anatomy & histology ; Color ; Female ; Male ; Wings, Animal/anatomy & histology ; Wings, Animal/physiology
References:
Müller, F. Ituna and Thyridia: a remarkable case of mimicry in butterflies. Proc. Entomol. Soc. Lond. 1879, 20–24 (1879).
Mallet, J. & Joron, M. Evolution of diversity in warning color and mimicry: polymorphisms, shifting balance, and speciation. Ann. Rev. Ecol. Evol. Syst. 30, 201–233. https://doi.org/10.1146/annurev.ecolsys.30.1.201 (1999). (PMID: 10.1146/annurev.ecolsys.30.1.201)
Sherratt, T. N. The evolution of Müllerian mimicry. Naturwissenschaften 95, 681–695. https://doi.org/10.1007/s00114-008-0403-y (2008). (PMID: 10.1007/s00114-008-0403-y185429022443389)
Edmunds, M. Why are there good and poor mimics?. Biol. J. Lin. Soc. 70, 459–466. https://doi.org/10.1006/bijl.1999.0425 (2000). (PMID: 10.1006/bijl.1999.0425)
Mallet, L. & Barton, N. H. Strong natural selection in a warning colour hybrid zone. Evolution 43(421–431), 1989. https://doi.org/10.1111/j.1558-5646.1989.tb04237.x (1989). (PMID: 10.1111/j.1558-5646.1989.tb04237.x)
Lindström, L., Alatalo, R. V., Mappes, J., Riipi, M. & Vertainen, L. Can aposematic signals evolve by gradual change?. Nature 397, 249–251 (1999). (PMID: 10.1038/16692)
Ezray, B. D., Wham, D. C., Hill, C. E. & Hines, H. M. Unsupervised machine learning reveals mimicry complexes in bumblebees occur along a perceptual continuum. Proc. R. Soc. Lond. 286, 20191501. https://doi.org/10.1098/rspb.2019.1501 (2019). (PMID: 10.1098/rspb.2019.1501)
Speed, M. P. Müllerian mimicry and the psychology of predation. Anim. Behav. 45, 571–580. https://doi.org/10.1006/anbe.1993.1067 (1993). (PMID: 10.1006/anbe.1993.1067)
Endler, J. A. Frequency-dependent predation, crypsis and aposematic coloration. Phil. Trans. R. Soc. Lond. B 319, 505–523 (1988). (PMID: 10.1098/rstb.1988.0062)
Turner, J. R. G. & Mallet, J. L. B. Did forest islands drive the diversity of warningly coloured butterflies? Biotic drift and the shifting balance. Philos. Trans. R. Soc. Lond. B 351, 835–845. https://doi.org/10.1098/rstb.1996.0078 (1996). (PMID: 10.1098/rstb.1996.0078)
Lindström, L., Alatalo, R. V., Lyytinen, A. & Mappes, J. Strong antiapostatic selection against novel rare aposematic prey. Proc. Natl. Acad. Sci. U. S. A. 98, 9181–9184. https://doi.org/10.1073/pnas.161071598 (2001). (PMID: 10.1073/pnas.1610715981145993755394)
Prudic, K. L., Skemp, A. K. & Papaj, D. R. Aposematic coloration, luminance contrast, and the benefits of conspicuousness. Behav. Ecol. 18, 41–46. https://doi.org/10.1093/beheco/arl046 (2007). (PMID: 10.1093/beheco/arl046)
Aronsson, M. & Gamberale-Stille, G. Importance of internal pattern contrast and contrast against the background in aposematic signals. Behav. Ecol. 20, 1356–1362. https://doi.org/10.1093/beheco/arp141 (2009). (PMID: 10.1093/beheco/arp141)
Guilford, T. How do “warning colours” work? conspicuousness may reduce recognition errors in experienced predators. Anim. Behav. 34, 286–288 (1986). (PMID: 10.1016/0003-3472(86)90034-5)
Gamberale-Stille, G. Benefit by contrast: an experiment with live aposematic prey. Behav. Ecol. 12, 768–772. https://doi.org/10.1093/beheco/12.6.768 (2001). (PMID: 10.1093/beheco/12.6.768)
Arenas, L. M., Walter, D. & Stevens, M. Signal honesty and predation risk among a closely related group of aposematic species. Sci. Rep. 5, 11021. https://doi.org/10.1038/srep11021 (2015). (PMID: 10.1038/srep11021)
Arenas, L. M., Troscianko, J. & Stevens, M. Color contrast and stability as key elements for effective warning signals. Front. Ecol. Evol. 2, 1–12. https://doi.org/10.3389/fevo.2014.00025 (2014). (PMID: 10.3389/fevo.2014.00025)
Ruxton, G. D., Speed, M. P. & Broom, M. Identifying the ecological conditions that select for intermediate levels of aposematic signaling. Evol. Ecol. 23, 491–501. https://doi.org/10.1007/s10682-008-9247-3 (2009). (PMID: 10.1007/s10682-008-9247-3)
Nokelainen, O., Valkonen, J., Lindstedt, C. & Mappes, J. Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. J. Anim. Ecol. 83, 598–605. https://doi.org/10.1111/1365-2656.12169 (2013). (PMID: 10.1111/1365-2656.12169)
Fabricant, S. A. & Herberstein, M. E. Hidden in plain orange: aposematic coloration is cryptic to a colorblind insect predator. Behav. Ecol. 26, 38–44. https://doi.org/10.1093/beheco/aru157 (2015). (PMID: 10.1093/beheco/aru157)
Bocek, M., Kusy, D., Motyka, M. & Bocak, L. Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles. Front. Zool. 16, 38. https://doi.org/10.1186/s12983-019-0335-8 (2019). (PMID: 10.1186/s12983-019-0335-8316366896798367)
Masek, M. et al. Molecular phylogeny, diversity and zoogeography of net-winged beetles (Coleoptera: Lycidae). Insects 9, 154. https://doi.org/10.3390/insects9040154 (2018). (PMID: 10.3390/insects90401546315567)
Moore, B. P. & Brown, W. V. Identification of warning odour components, bitter principles and antifeedants in an aposematic beetle: Metriorrhynchus rhipidius (Coleoptera: Lycidae). Ins. Biochem. 1, 493–499. https://doi.org/10.1016/0020-1790(81)90016-0 (1981). (PMID: 10.1016/0020-1790(81)90016-0)
Guilford, T., Nicol, C., Rotschild, M. & Moore, B. P. The biological roles of pyrazines: evidence for a warning odour function. Biol. J. Linn. Soc. 31, 113–128. https://doi.org/10.1111/j.1095-8312.1987.tb01984.x (1987). (PMID: 10.1111/j.1095-8312.1987.tb01984.x)
Linsley, E. G., Eisner, T. & Klots, A. B. Mimetic assemblages of sibling species of lycid beetles. Evolution 15, 15–29. https://doi.org/10.2307/2405840 (1961). (PMID: 10.2307/2405840)
Endler, J. A. The color of light in forests and its implications. Ecol. Monogr. 63, 1–27. https://doi.org/10.2307/2937121 (1993). (PMID: 10.2307/2937121)
Lingafelter, S. W. Hispaniolan Hemilophini (Coleoptera, Cerambycidae, Lamiinae). ZooKeys 258, 53–83. https://doi.org/10.3897/zookeys.258.4391 (2013). (PMID: 10.3897/zookeys.258.4391)
Lamas, G. (ed.) Atlas of Neotropical Lepidoptera. Checklist: Part 4A Hesperioidea—Papiionoidea (Scientific Publishers and Association of Tropical Lepidoptera, Gainesville, 2004).
Sklenarova, K., Chesters, D. & Bocak, L. Phylogeography of poorly dispersing net-winged beetles: a role of drifting india in the origin of afrotropical and oriental fauna. PLoS ONE 8, e67957. https://doi.org/10.1371/journal.pone.0067957 (2013). (PMID: 10.1371/journal.pone.0067957238407933694047)
Bocak, L., Kundrata, R., Andújar, F. C. & Vogler, A. P. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): a new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc. R. Soc. Lond. B 283, 20152350. https://doi.org/10.1098/rspb.2015.2350 (2016). (PMID: 10.1098/rspb.2015.2350)
Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431. https://doi.org/10.1016/S1367-9120(01)00069-4 (2002). (PMID: 10.1016/S1367-9120(01)00069-4)
Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350. https://doi.org/10.1038/nature14949 (2015). (PMID: 10.1038/nature1494926266979)
Kazantsev, S. V. New and little known net-winged beetles (Coleoptera: Lycidae) from the Crocker Range Mountains, Sabah, East Malaysia. Russ. Entomol. J. 27, 255–270. https://doi.org/10.15298/rusentj.27.3.04 (2018). (PMID: 10.15298/rusentj.27.3.04)
Motyka, M. Male identification, generic classification and sexual dimorphism of Micronychus pardus (Kazantsev, 2018) comb nov (Coleoptera: Lycidae: Calochrominae). Zootaxa 4657, 177–182. https://doi.org/10.11646/zootaxa.4657.1.9 (2019). (PMID: 10.11646/zootaxa.4657.1.9)
Aronsson, M. & Gamberale-Stille, G. Evidence of signaling benefits to contrasting internal color boundaries in warning coloration. Behav. Ecol. 24, 349–354. https://doi.org/10.1093/beheco/ars170 (2013). (PMID: 10.1093/beheco/ars170)
Wilson, J. et al. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 3, 1272. https://doi.org/10.1038/ncomms2275 (2012). (PMID: 10.1038/ncomms227523232402)
Jiruskova, A., Motyka, M., Bocek, M. & Bocak, L. The Malacca Strait separates distinct faunas of poorly-flying Cautires net-winged beetles. PeerJ 7, e6511. https://doi.org/10.7717/peerj.6511 (2019). (PMID: 10.7717/peerj.6511308636756407506)
Malohlava, V. & Bocak, L. Evidence of extreme habitat stability in a Southeast Asian biodiversity hotspot based on the evolutionary analysis of neotenic net-winged beetles. Mol. Ecol. 19, 4800–4811. https://doi.org/10.1111/j.1365-294X.2010.04850.x (2010). (PMID: 10.1111/j.1365-294X.2010.04850.x20958816)
Nater, A. et al. Morphometric, behavioral, and genomic evidence for a new orangutan species. Curr. Biol. 27, 3487-3498.e10. https://doi.org/10.1016/j.cub.2017.09.047 (2017). (PMID: 10.1016/j.cub.2017.09.04729103940)
Willmott, K. R., Willmott, J. C. R., Elias, M. & Jiggins, C. D. Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proc. R. Soc. B 284, 20170744. https://doi.org/10.1098/rspb.2017.0744 (2017). (PMID: 10.1098/rspb.2017.074428539522)
Gompert, Z., Willmott, K. R. & Elias, M. Heterogeneity in predator micro-habitat use and the maintenance of Müllerian mimetic diversity. J. Theor. Biol. 281, 39–46. https://doi.org/10.1016/j.jtbi.2011.04.024 (2011). (PMID: 10.1016/j.jtbi.2011.04.02421549131)
Eisner, T. et al. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology 18, 109–119. https://doi.org/10.1007/s00049-007-0398-4 (2008). (PMID: 10.1007/s00049-007-0398-4186983692512966)
Bocak, L., Li, Y. & Ellenberger, S. The discovery of Burmolycus compactus gen. et sp. Nov. from the mid-Cretaceous of Myanmar provides the evidence for early diversification of net-winged beetles (Coleoptera, Lycidae). Cret. Res. 99, 149–155. https://doi.org/10.1016/j.cretres.2019.02.018 (2019). (PMID: 10.1016/j.cretres.2019.02.018)
Motyka, M., Kampova, L. & Bocak, L. Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism. Sci. Rep. 8, 3744. https://doi.org/10.1038/s41598-018-22155-6 (2018). (PMID: 10.1038/s41598-018-22155-6294873415829258)
Guilford, T. The evolution of conspicuous coloration. Am. Nat. 131, S7–S21 (1988). (PMID: 10.1086/284764)
Alatalo, R. V. & Mappes, J. Tracking the evolution of warning signals. Nature 382, 708–710. https://doi.org/10.1038/382708a0 (1996). (PMID: 10.1038/382708a0)
Speed, M. P. Warning signals, receiver psychology and predator memory. Anim. Behav. 60(269–278), 2000. https://doi.org/10.1006/anbe.2000.1430 (2000). (PMID: 10.1006/anbe.2000.1430)
Mappes, J. & Alatalo, R. V. Batesian mimicry and signal accuracy. Evolution 51, 2050–2053. https://doi.org/10.2307/2411028 (1997). (PMID: 10.2307/241102828565127)
Motyka, M., Masek, M. & Bocak, L. Congruence between morphology and molecular phylogeny: the reclassification of Calochromini (Coleoptera: Lycidae) and their dispersal history. Zool. J. Linn. Soc. 180, 47–65. https://doi.org/10.1111/zoj.12497 (2017). (PMID: 10.1111/zoj.12497)
Tiana, L. et al. Homeotic shift late in development drives mimetic color variation in a bumble bee. Proc. Nat. Acad. Sci. USA 116, 11857–11865 (2019).
Lewis, J. J. et al. Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proc. Natl. Acad. Sci. USA 116, 24174–24183. https://doi.org/10.1073/pnas.1907068116 (2019). (PMID: 10.1073/pnas.190706811631712408)
Aubier, T. G. & Sherratt, T. N. Diversity in Müllerian mimicry: The optimal predator sampling strategy explains both local and regional polymorphism in prey. Evolution 69, 2831–2845. https://doi.org/10.1111/evo.12790 (2015). (PMID: 10.1111/evo.1279026456598)
Endler, J. A. & Mappes, J. Predator mixes and the conspicuousness of aposematic signals. Am. Nat. 163, 532–547. https://doi.org/10.1086/382662 (2004). (PMID: 10.1086/38266215122501)
Ree, R. H. Detecting the historical signature of key innovations using stochastic models of character evolution and cladogenesis. Evolution 59, 257–265. https://doi.org/10.1111/j.0014-3820.2005.tb00986.x (2005). (PMID: 10.1111/j.0014-3820.2005.tb00986.x15807412)
Keller, S. R. & Taylor, D. R. History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol. Lett. 11, 852–866. https://doi.org/10.1111/j.1461-0248.2008.01188.x (2008). (PMID: 10.1111/j.1461-0248.2008.01188.x18422638)
Bocak, L. & Yagi, T. Evolution of mimicry patterns in Metriorrhynchus (Coleoptera: Lycidae): the history of dispersal and speciation in southeast Asia. Evolution 64, 39–52. https://doi.org/10.1111/j.1558-5646.2009.00812.x (2010). (PMID: 10.1111/j.1558-5646.2009.00812.x19674098)
Kusy, D., Motyka, M., Bocek, M., Masek, M. & Bocak, L. Phylogenomic analysis resolves the relationships among net-winged beetles (Coleoptera: Lycidae) and reveals the parallel evolution of morphological traits. Syst. Ent. 44, 911–925. https://doi.org/10.1111/syen.12363 (2019). (PMID: 10.1111/syen.12363)
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013). (PMID: 10.1093/molbev/mst0102332969023329690)
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300 (2015). (PMID: 10.1093/molbev/msu300)
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. https://doi.org/10.1038/nmeth.4285 (2017). (PMID: 10.1038/nmeth.4285284813635453245)
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34(772–773), 2016. https://doi.org/10.1093/molbev/msw260 (2016). (PMID: 10.1093/molbev/msw260)
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. https://doi.org/10.1093/molbev/mss075 (2012). (PMID: 10.1093/molbev/mss075223677483408070)
Papadopoulou, A., Anastasiou, I. & Vogler, A. P. Revisiting the insect mitochondrial molecular clock: the mid-aegean trench calibration. Mol. Biol. Evol. 27, 1659–1672. https://doi.org/10.1093/molbev/msq051 (2010). (PMID: 10.1093/molbev/msq05120167609)
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018). (PMID: 10.1093/sysbio/syy032297184476101584)
Entry Date(s):
Date Created: 20200710 Date Completed: 20201221 Latest Revision: 20210708
Update Code:
20240105
PubMed Central ID:
PMC7343875
DOI:
10.1038/s41598-020-68027-w
PMID:
32641709
Czasopismo naukowe
Mimicry is a hot spot of evolutionary research, but de novo origins of aposematic patterns, the persistence of multiple patterns in Müllerian communities, and the persistence of imperfect mimics still need to be investigated. Local mimetic assemblages can contain up to a hundred of species, their structure can be a result of multiple dispersal events, and the gradual build-up of the communities. Here, we investigate the structure of lowland and mountain mimetic communities of net-winged beetles by sampling the Crocker Range in north-eastern Borneo and neighbouring regions. The local endemics evolved from the Bornean lowland fauna which is highly endemic at the species level. We inferred that metriorrhynchine net-winged beetles evolved in high elevations yellow/black and reticulate aposematic high-contrast signals from a widespread low-contrast brown/black pattern. As the mountain range is ~ 6 million years old, and these patterns do not occur elsewhere, we assume their in situ origins. We demonstrate that a signal with increased internal contrast can evolve de novo in a mimetic community and can persist despite its low frequency. Additionally, a similar aposematic signal evolves from different structures and its similarity is imperfect. The community with multiple patterns sets conditions for the evolution of aposematic sexual dimorphism as demonstrated by the yellow/black male and reticulate female pattern of Micronychus pardus. These insights elucidate the complex character of the evolution of mimetic signalling in the dynamically diversifying biota of high tropical mountains.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies