Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Insulin-like growth factor 2 (IGF2) protects against Huntington's disease through the extracellular disposal of protein aggregates.

Tytuł:
Insulin-like growth factor 2 (IGF2) protects against Huntington's disease through the extracellular disposal of protein aggregates.
Autorzy:
García-Huerta P; Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Sector B, Second Floor, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile.
Troncoso-Escudero P; Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Sector B, Second Floor, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile.; Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile.
Wu D; Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Thiruvalluvan A; Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Cisternas-Olmedo M; Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.; Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile.
Henríquez DR; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.; Department of Cell Biology, Faculty of Sciences, University of Chile, Santiago, Chile.
Plate L; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
Chana-Cuevas P; Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile.
Saquel C; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.; Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile.
Thielen P; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, 02115, USA.
Longo KA; Proteostasis Therapeutics, Cambridge, MA, USA.
Geddes BJ; Proteostasis Therapeutics, Cambridge, MA, USA.
Lederkremer GZ; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.; George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.
Sharma N; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.; George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.
Shenkman M; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.; George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.
Naphade S; Buck Institute for Research on Aging, Novato, CA, 94945, USA.
Sardi SP; Rare and Neurological Diseases Therapeutic Area, Sanofi, 49 New York Avenue, Framingham, MA, 01701, USA.
Spichiger C; Faculty of Sciences, Institute of Biochemistry and Microbiology, University Austral of Chile, Valdivia, Chile.
Richter HG; Faculty of Medicine, Institute of Anatomy, Histology and Pathology, University Austral of Chile, Valdivia, Chile.
Court FA; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.; Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile.; Buck Institute for Research on Aging, Novato, CA, 94945, USA.
Tshilenge KT; Buck Institute for Research on Aging, Novato, CA, 94945, USA.
Ellerby LM; Buck Institute for Research on Aging, Novato, CA, 94945, USA.
Wiseman RL; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
Gonzalez-Billault C; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.; Department of Cell Biology, Faculty of Sciences, University of Chile, Santiago, Chile.; Buck Institute for Research on Aging, Novato, CA, 94945, USA.
Bergink S; Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Vidal RL; Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile. .; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. .; Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile. .
Hetz C; Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile. .; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. .; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Sector B, Second Floor, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile. .; Buck Institute for Research on Aging, Novato, CA, 94945, USA. .
Źródło:
Acta neuropathologica [Acta Neuropathol] 2020 Nov; Vol. 140 (5), pp. 737-764. Date of Electronic Publication: 2020 Jul 08.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Berlin : Springer Verlag
MeSH Terms:
Huntington Disease/*metabolism
Huntington Disease/*pathology
Insulin-Like Growth Factor II/*metabolism
Protein Aggregation, Pathological/*metabolism
Animals ; Humans ; Insulin-Like Growth Factor II/pharmacology ; Mice ; Mice, Transgenic ; Protein Aggregates/drug effects
References:
Neurotherapeutics. 2019 Oct;16(4):979-998. (PMID: 31792895)
Nature. 2002 Dec 12;420(6916):629-35. (PMID: 12478284)
Sci Transl Med. 2015 Jan 28;7(272):272ra12. (PMID: 25632036)
Mol Cell. 2018 Jan 18;69(2):169-181. (PMID: 29107536)
Nat Rev Neurol. 2017 Aug;13(8):477-491. (PMID: 28731040)
PLoS One. 2012;7(12):e53123. (PMID: 23300879)
J Neuroinflammation. 2013 Mar 12;10:37. (PMID: 23497056)
BMC Genomics. 2015 Jun 30;16:482. (PMID: 26122086)
J Clin Invest. 2005 Jun;115(6):1449-57. (PMID: 15931380)
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):757-62. (PMID: 18178615)
Mol Cell. 2007 Jul 6;27(1):53-66. (PMID: 17612490)
Acta Neuropathol. 2016 Oct;132(4):577-92. (PMID: 27221146)
Annu Rev Biochem. 2017 Jun 20;86:27-68. (PMID: 28498720)
Genes Dev. 2009 Oct 1;23(19):2294-306. (PMID: 19762508)
J Physiol. 2016 Nov 15;594(22):6583-6594. (PMID: 27616476)
PLoS One. 2018 Jun 11;13(6):e0198820. (PMID: 29889903)
Nat Rev Mol Cell Biol. 2012 Jan 18;13(2):89-102. (PMID: 22251901)
Nat Commun. 2015 Sep 15;6:8265. (PMID: 26369386)
J Neurosci. 2017 Sep 13;37(37):9000-9012. (PMID: 28821645)
Brain. 2016 Aug;139(Pt 8):2113-21. (PMID: 27190028)
Cell Mol Neurobiol. 2016 Apr;36(3):459-70. (PMID: 26951563)
Nat Med. 2015 Dec;21(12):1406-15. (PMID: 26646497)
J Biol Chem. 2015 Sep 25;290(39):23631-45. (PMID: 26170458)
ACS Chem Biol. 2014 Jun 20;9(6):1273-83. (PMID: 24689980)
J Cell Biol. 1990 Apr;110(4):1307-17. (PMID: 2157718)
Front Mol Neurosci. 2014 Sep 29;7:77. (PMID: 25324717)
Neurobiol Dis. 2006 Feb;21(2):444-55. (PMID: 16230019)
J Neurosci. 2012 Apr 18;32(16):5688-703. (PMID: 22514330)
EMBO J. 2011 Aug 26;30(19):4071-83. (PMID: 21873981)
Mol Cell Biol. 2003 Nov;23(21):7448-59. (PMID: 14559994)
Brain Res. 2016 Oct 15;1649(Pt B):173-180. (PMID: 26993573)
Aging Cell. 2017 Aug;16(4):615-623. (PMID: 28436203)
Cell. 1996 Nov 1;87(3):493-506. (PMID: 8898202)
Source Code Biol Med. 2014 Dec 24;9(1):30. (PMID: 25550709)
Trends Cell Biol. 2001 Dec;11(12):471-7. (PMID: 11719051)
Curr Mol Med. 2011 Feb;11(1):1-12. (PMID: 21189122)
EMBO Mol Med. 2014 Aug 06;6(10):1246-62. (PMID: 25100745)
Nat Neurosci. 2014 Aug;17(8):1064-72. (PMID: 25017010)
Hum Mol Genet. 2010 Apr 15;19(8):1528-38. (PMID: 20097678)
J Neurosci. 2013 May 29;33(22):9408-19. (PMID: 23719809)
Hum Mol Genet. 2005 May 15;14(10):1379-92. (PMID: 15829505)
Nature. 2011 Jan 27;469(7331):491-7. (PMID: 21270887)
J Cell Sci. 2013 Sep 15;126(Pt 18):4136-46. (PMID: 23843615)
Brain Res Brain Res Rev. 2004 Mar;44(2-3):117-40. (PMID: 15003389)
Nature. 2016 Jan 21;529(7586):326-35. (PMID: 26791723)
Nat Commun. 2013;4:2311. (PMID: 23921428)
Science. 2008 Feb 15;319(5865):916-9. (PMID: 18276881)
Hum Mol Genet. 2003 Jul 1;12(13):1555-67. (PMID: 12812983)
Clin Cancer Res. 2010 Jun 1;16(11):2999-3010. (PMID: 20404007)
Mol Reprod Dev. 1997 Oct;48(2):194-207. (PMID: 9291469)
Biochem Biophys Res Commun. 2012 Apr 13;420(3):558-63. (PMID: 22445760)
PLoS One. 2016 Sep 14;11(9):e0162890. (PMID: 27627435)
Development. 1994 Oct;120(10):2933-43. (PMID: 7607083)
J Neurosci. 2012 Mar 7;32(10):3376-87. (PMID: 22399759)
Cell. 2010 Feb 5;140(3):313-26. (PMID: 20144757)
Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11716-20. (PMID: 1465388)
Hum Mol Genet. 2012 May 15;21(10):2245-62. (PMID: 22337954)
Mol Reprod Dev. 2008 Nov;75(11):1678-87. (PMID: 18361416)
Nat Rev Genet. 2005 Oct;6(10):756-65. (PMID: 16205715)
J Virol. 2001 Dec;75(24):12382-92. (PMID: 11711628)
J Alzheimers Dis. 2005 Dec;8(3):247-68. (PMID: 16340083)
J Neurosci. 2006 Jan 11;26(2):585-96. (PMID: 16407557)
Learn Mem. 2014 Sep 16;21(10):556-63. (PMID: 25227250)
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9730-5. (PMID: 20460307)
Cell Rep. 2013 Apr 25;3(4):1279-92. (PMID: 23583182)
Endocrinology. 1999 Jan;140(1):520-32. (PMID: 9886865)
Mol Cell. 2020 Apr 16;78(2):346-358.e9. (PMID: 32268123)
J Clin Invest. 2015 May;125(5):1979-86. (PMID: 25844897)
Gerontology. 2013;59(3):240-9. (PMID: 23257688)
PLoS One. 2014 Apr 14;9(4):e94287. (PMID: 24732467)
Hum Mol Genet. 2016 Oct 1;25(R2):R173-R181. (PMID: 27493026)
J Neurosci. 2005 Jan 5;25(1):108-17. (PMID: 15634772)
Cell Mol Life Sci. 2013 Jun;70(12):2099-121. (PMID: 22986507)
Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):E5427-33. (PMID: 26351672)
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6804-9. (PMID: 24753614)
J Med Chem. 2009 Aug 27;52(16):4981-5004. (PMID: 19610618)
Acta Neuropathol. 2015 Sep;130(3):315-31. (PMID: 26210990)
Science. 2011 Nov 25;334(6059):1081-6. (PMID: 22116877)
Cell. 2006 Jun 16;125(6):1179-91. (PMID: 16777606)
Neurobiol Dis. 2015 Apr;76:24-36. (PMID: 25583186)
Curr Pharm Des. 2016;22(39):5948-5961. (PMID: 27412171)
J Neuropathol Exp Neurol. 1985 Nov;44(6):559-77. (PMID: 2932539)
Cell. 1991 Feb 22;64(4):849-59. (PMID: 1997210)
FEBS J. 2008 Sep;275(17):4263-70. (PMID: 18637946)
J Neurosci. 2005 Apr 20;25(16):4169-80. (PMID: 15843620)
Physiol Rev. 2010 Jul;90(3):905-81. (PMID: 20664076)
J Neurosci. 2016 Aug 10;36(32):8317-28. (PMID: 27511006)
Sci Rep. 2016 May 16;6:25960. (PMID: 27180807)
Nat Neurosci. 2010 Jul;13(7):805-11. (PMID: 20581817)
Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21. (PMID: 11309499)
Neuroreport. 2009 Oct 28;20(16):1414-8. (PMID: 19738502)
Cell Prolif. 1998 Oct-Dec;31(5-6):173-89. (PMID: 9925986)
Nat Rev Neurosci. 2012 Mar 20;13(4):225-39. (PMID: 22430016)
Nat Neurosci. 2018 Oct;21(10):1332-1340. (PMID: 30250260)
Int J Dev Neurosci. 1993 Feb;11(1):1-9. (PMID: 7683839)
Neurobiol Dis. 2020 Feb;134:104635. (PMID: 31669734)
Handb Clin Neurol. 2011;100:83-100. (PMID: 21496571)
J Gene Med. 2000 Nov-Dec;2(6):444-54. (PMID: 11199265)
Curr Opin Neurobiol. 2020 Apr;61:116-124. (PMID: 32197217)
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12483-8. (PMID: 19620721)
Neurology. 2010 Jul 6;75(1):57-63. (PMID: 20603485)
Trends Neurosci. 2012 May;35(5):274-83. (PMID: 22341662)
Acta Neuropathol. 2017 Sep;134(3):489-506. (PMID: 28341998)
Cell. 2013 Jun 20;153(7):1435-47. (PMID: 23791175)
PLoS One. 2013 Jul 08;8(7):e68357. (PMID: 23861892)
Nature. 2017 Feb 16;542(7641):367-371. (PMID: 28178240)
Stem Cell Reports. 2019 Apr 9;12(4):816-830. (PMID: 30905741)
Nature. 2011 Nov 23;480(7378):543-6. (PMID: 22113611)
Nat Methods. 2008 Jul;5(7):605-7. (PMID: 18536722)
Elife. 2016 Jul 20;5:. (PMID: 27435961)
Nat Rev Dis Primers. 2015 Apr 23;1:15005. (PMID: 27188817)
J Neurosci. 2018 Jan 24;38(4):1015-1029. (PMID: 29217683)
Grant Information:
R01 AG046495 United States AG NIA NIH HHS; R01 NS092829 United States NS NINDS NIH HHS; R01 NS100529 United States NS NINDS NIH HHS
Substance Nomenclature:
0 (Protein Aggregates)
67763-97-7 (Insulin-Like Growth Factor II)
Entry Date(s):
Date Created: 20200710 Date Completed: 20210531 Latest Revision: 20240316
Update Code:
20240316
PubMed Central ID:
PMC8513574
DOI:
10.1007/s00401-020-02183-1
PMID:
32642868
Czasopismo naukowe
Impaired neuronal proteostasis is a salient feature of many neurodegenerative diseases, highlighting alterations in the function of the endoplasmic reticulum (ER). We previously reported that targeting the transcription factor XBP1, a key mediator of the ER stress response, delays disease progression and reduces protein aggregation in various models of neurodegeneration. To identify disease modifier genes that may explain the neuroprotective effects of XBP1 deficiency, we performed gene expression profiling of brain cortex and striatum of these animals and uncovered insulin-like growth factor 2 (Igf2) as the major upregulated gene. Here, we studied the impact of IGF2 signaling on protein aggregation in models of Huntington's disease (HD) as proof of concept. Cell culture studies revealed that IGF2 treatment decreases the load of intracellular aggregates of mutant huntingtin and a polyglutamine peptide. These results were validated using induced pluripotent stem cells (iPSC)-derived medium spiny neurons from HD patients and spinocerebellar ataxia cases. The reduction in the levels of mutant huntingtin was associated with a decrease in the half-life of the intracellular protein. The decrease in the levels of abnormal protein aggregation triggered by IGF2 was independent of the activity of autophagy and the proteasome pathways, the two main routes for mutant huntingtin clearance. Conversely, IGF2 signaling enhanced the secretion of soluble mutant huntingtin species through exosomes and microvesicles involving changes in actin dynamics. Administration of IGF2 into the brain of HD mice using gene therapy led to a significant decrease in the levels of mutant huntingtin in three different animal models. Moreover, analysis of human postmortem brain tissue and blood samples from HD patients showed a reduction in IGF2 level. This study identifies IGF2 as a relevant factor deregulated in HD, operating as a disease modifier that buffers the accumulation of abnormal protein species.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies