Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

PPARβ/δ-dependent MSC metabolism determines their immunoregulatory properties.

Tytuł:
PPARβ/δ-dependent MSC metabolism determines their immunoregulatory properties.
Autorzy:
Contreras-Lopez RA; Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.; IRMB, Univ Montpellier, INSERM, CHU Montpellier, Inserm U 1183, IRMB, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier Cedex 5, France.
Elizondo-Vega R; Facultad de Ciencias Biológicas, Departamento de Biología Celular, Laboratorio de Biología Celular, Universidad de Concepción, Concepción, Chile.
Torres MJ; Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaiso, Valparaiso, Chile.
Vega-Letter AM; Cells for Cells, Consorcio Regenero, Las Condes, Santiago, Chile.; Laboratory of Nano-Regenerative Medicine, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.
Luque-Campos N; Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.
Paredes-Martinez MJ; Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.
Pradenas C; Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.
Tejedor G; IRMB, Univ Montpellier, INSERM, CHU Montpellier, Inserm U 1183, IRMB, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier Cedex 5, France.
Oyarce K; Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.
Salgado M; Facultad de Ciencias Biológicas, Departamento de Biología Celular, Laboratorio de Biología Celular, Universidad de Concepción, Concepción, Chile.
Jorgensen C; IRMB, Univ Montpellier, INSERM, CHU Montpellier, Inserm U 1183, IRMB, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier Cedex 5, France.
Khoury M; Cells for Cells, Consorcio Regenero, Las Condes, Santiago, Chile.; Laboratory of Nano-Regenerative Medicine, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.
Kronke G; Department of Internal Medicine 3, University of Erlangen-Nuremberg, 91054, Erlangen, Germany.
Garcia-Robles MA; Facultad de Ciencias Biológicas, Departamento de Biología Celular, Laboratorio de Biología Celular, Universidad de Concepción, Concepción, Chile.
Altamirano C; Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaiso, Valparaiso, Chile.
Luz-Crawford P; Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile. .
Djouad F; IRMB, Univ Montpellier, INSERM, CHU Montpellier, Inserm U 1183, IRMB, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier Cedex 5, France. .
Źródło:
Scientific reports [Sci Rep] 2020 Jul 10; Vol. 10 (1), pp. 11423. Date of Electronic Publication: 2020 Jul 10.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Mesenchymal Stem Cells/*metabolism
PPAR-beta/*metabolism
Receptors, Cytoplasmic and Nuclear/*metabolism
Animals ; Bone Marrow Cells/cytology ; CD4-Positive T-Lymphocytes/cytology ; Cell Proliferation ; Gene Silencing ; Glycolysis ; Immunosuppression Therapy ; Mice ; Oligomycins/chemistry ; Th1 Cells/cytology ; Th17 Cells/cytology
References:
Magadum, A. & Engel, F. B. PPARbeta/delta: Linking Metabolism to Regeneration. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19072013 (2018). (PMID: 10.3390/ijms19072013299965026073704)
Luz-Crawford, P. et al. PPARbeta/delta directs the therapeutic potential of mesenchymal stem cells in arthritis. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2015-208696 (2016). (PMID: 10.1136/annrheumdis-2015-20869626964143)
Kramer, D. K. et al. Role of AMP kinase and PPARdelta in the regulation of lipid and glucose metabolism in human skeletal muscle. J. Biol. Chem. 282, 19313–19320. https://doi.org/10.1074/jbc.M702329200 (2007). (PMID: 10.1074/jbc.M70232920017500064)
Reilly, S. M. & Lee, C. H. PPAR delta as a therapeutic target in metabolic disease. FEBS Lett. 582, 26–31. https://doi.org/10.1016/j.febslet.2007.11.040 (2008). (PMID: 10.1016/j.febslet.2007.11.04018036566)
Kilgore, K. S. & Billin, A. N. PPARbeta/delta ligands as modulators of the inflammatory response. Curr. Opin. Investig. Drugs 9, 463–469 (2008). (PMID: 18465655)
Barish, G. D. et al. PPARdelta regulates multiple proinflammatory pathways to suppress atherosclerosis. Proc. Natl. Acad. Sci. USA 105, 4271–4276. https://doi.org/10.1073/pnas.0711875105 (2008). (PMID: 10.1073/pnas.071187510518337509)
Krampera, M. et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101, 3722–3729. https://doi.org/10.1182/blood-2002-07-2104 (2003). (PMID: 10.1182/blood-2002-07-210412506037)
Lee, C. H. et al. Peroxisome proliferator-activated receptor delta promotes very low-density lipoprotein-derived fatty acid catabolism in the macrophage. Proc. Natl. Acad. Sci. USA 103, 2434–2439. https://doi.org/10.1073/pnas.0510815103 (2006). (PMID: 10.1073/pnas.051081510316467150)
Galvan-Pena, S. & O’Neill, L. A. Metabolic reprograming in macrophage polarization. Front. Immunol. 5, 420. https://doi.org/10.3389/fimmu.2014.00420 (2014). (PMID: 10.3389/fimmu.2014.00420252289024151090)
Kang, K. et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 7, 485–495. https://doi.org/10.1016/j.cmet.2008.04.002 (2008). (PMID: 10.1016/j.cmet.2008.04.002185228302586840)
Hu, Z., Zou, Q. & Su, B. Regulation of T cell immunity by cellular metabolism. Front. Med. 12, 463–472. https://doi.org/10.1007/s11684-018-0668-2 (2018). (PMID: 10.1007/s11684-018-0668-230112717)
Luz-Crawford, P. et al. Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway. PLoS ONE 7, e45272. https://doi.org/10.1371/journal.pone.0045272 (2012). (PMID: 10.1371/journal.pone.0045272230288993444478)
Luz-Crawford, P. et al. Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer. Stem Cell Res. Ther 10, 232. https://doi.org/10.1186/s13287-019-1307-9 (2019). (PMID: 10.1186/s13287-019-1307-9313708796676586)
Court, A. C. et al. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Rep. 21, e48052. https://doi.org/10.15252/embr.201948052 (2020). (PMID: 10.15252/embr.20194805231984629)
Wobma, H. M. et al. Dual IFN-gamma/hypoxia priming enhances immunosuppression of mesenchymal stromal cells through regulatory proteins and metabolic mechanisms. J. Immunol. Regen. Med. 1, 45–56. https://doi.org/10.1016/j.regen.2018.01.001 (2018). (PMID: 10.1016/j.regen.2018.01.001303645706197483)
Luz-Crawford, P. et al. Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res. Ther. 4, 65. https://doi.org/10.1186/scrt216 (2013). (PMID: 10.1186/scrt216237347803706898)
Kurte, M. et al. IL17/IL17RA as a novel signaling axis driving mesenchymal stem cell therapeutic function in experimental autoimmune encephalomyelitis. Front. Immunol. 9, 802. https://doi.org/10.3389/fimmu.2018.00802 (2018). (PMID: 10.3389/fimmu.2018.00802297606925936796)
Substance Nomenclature:
0 (Oligomycins)
0 (PPAR-beta)
0 (Ppard protein, mouse)
0 (Receptors, Cytoplasmic and Nuclear)
Entry Date(s):
Date Created: 20200712 Date Completed: 20210111 Latest Revision: 20211204
Update Code:
20240105
PubMed Central ID:
PMC7351754
DOI:
10.1038/s41598-020-68347-x
PMID:
32651456
Czasopismo naukowe
Mesenchymal stem cell (MSC)-based therapy is being increasingly considered a powerful opportunity for several disorders based on MSC immunoregulatory properties. Nonetheless, MSC are versatile and plastic cells that require an efficient control of their features and functions for their optimal use in clinic. Recently, we have shown that PPARβ/δ is pivotal for MSC immunoregulatory and therapeutic functions. However, the role of PPARβ/δ on MSC metabolic activity and the relevance of PPARβ/δ metabolic control on MSC immunosuppressive properties have never been addressed. Here, we demonstrate that PPARβ/δ deficiency forces MSC metabolic adaptation increasing their glycolytic activity required for their immunoregulatory functions on Th1 and Th17 cells. Additionally, we show that the inhibition of the mitochondrial production of ATP in MSC expressing PPARβ/δ, promotes their metabolic switch towards aerobic glycolysis to stably enhance their immunosuppressive capacities significantly. Altogether, these data demonstrate that PPARβ/δ governs the immunoregulatory potential of MSC by dictating their metabolic reprogramming and pave the way for enhancing MSC immunoregulatory properties and counteracting their versatility.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies