Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Iminodiacetic acid functionalized magnetic peanut husk for the removal of methylene blue from solution: characterization and equilibrium studies.

Tytuł:
Iminodiacetic acid functionalized magnetic peanut husk for the removal of methylene blue from solution: characterization and equilibrium studies.
Autorzy:
Aryee AA; College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China.
Mpatani FM; College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China.
Kani AN; College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China.
Dovi E; College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China.
Han R; College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China. .
Li Z; College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China. .
Qu L; College of Chemistry, Zhengzhou University, No 100 of Kexue Road, Zhengzhou, 450001, People's Republic of China. .
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2020 Nov; Vol. 27 (32), pp. 40316-40330. Date of Electronic Publication: 2020 Jul 14.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Methylene Blue*/analysis
Water Pollutants, Chemical*/analysis
Adsorption ; Arachis ; Hydrogen-Ion Concentration ; Imino Acids ; Kinetics ; Magnetic Phenomena
References:
Ajmal Z, Muhmood A, Usman M, Kizito S, Lu J, Dong R, Wu S (2018) Phosphate removal from aqueous solution using iron oxides: adsorption, desorption and regeneration characteristics. J Colloid Interface Sci 528:145–155. https://doi.org/10.1016/j.jcis.2018.05.084. (PMID: 10.1016/j.jcis.2018.05.084)
Akcali ID, Ince A, Guzel E (2006) Selected physical properties of peanuts. Int J Food Prop 9(1):25–37. https://doi.org/10.1080/10942910500471636. (PMID: 10.1080/10942910500471636)
Aksu Z (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris. Process Biochem 38(1):89–99. https://doi.org/10.1016/s0032-9592(02)00051-1. (PMID: 10.1016/s0032-9592(02)00051-1)
AlOthman ZA, Naushad M, Ali R (2012) Kinetic, equilibrium isotherm and thermodynamic studies of Cr (VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid. Environ Sci Pollut R 20(5):3351–3365. https://doi.org/10.1007/s11356-012-1259-4. (PMID: 10.1007/s11356-012-1259-4)
Aryee AA, Zhang RZ, Liu HF, Han RP, Li ZH, Qu LP (2020a) Application of magnetic Peanut husk for methylene blue adsorption in batch mode. Desalin Water Treat In press doi. https://doi.org/10.5004/dwt.2020.25862.
Aryee AA, Mpatani FM, Zhang X, Kani AN, Dovi E, Han RP, Li ZH, Qu LB (2020b) Iron (III) and iminodiacetic acid functionalized magnetic peanut husk for the removal of phosphate from solution: characterization, kinetic and equilibrium studies. J Clean Prod 268:122191. https://doi.org/10.1016/j.jclepro.2020.122191.
Banerjee S, Chattopadhyaya MC (2017) Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab J Chem 10:S1629–S1638. https://doi.org/10.1016/j.arabjc.2013.06.005. (PMID: 10.1016/j.arabjc.2013.06.005)
Baraka A (2012) Adsorptive removal of tartrazine and methylene blue from wastewater using melamine-formaldehyde-tartaric acid resin (and a discussion about pseudo second order model). Desalin Water Treat 44:128–141. https://doi.org/10.1080/19443994.2012.691778. (PMID: 10.1080/19443994.2012.691778)
Batal A, Dale N, Café M (2005) Nutrient composition of peanut meal. J Appl Poultry Res 14(2):254–257. https://doi.org/10.1093/japr/14.2.254.
Bharathi KS, Ramesh ST (2013) Removal of dyes using agricultural waste as low-cost adsorbents: a review. Appl Water Sci 3(4):773–790. https://doi.org/10.1007/s13201-013-0117-y. (PMID: 10.1007/s13201-013-0117-y)
Bulgariu L, Escudero LB, Bello OS, Iqbal M, Nisar J, Adegoke KA, Anastopoulos I (2018) The utilization of leaf-based adsorbents for dyes removal: a review. J Mol Liq 276:728–747. https://doi.org/10.1016/j.molliq.2018.12.001. (PMID: 10.1016/j.molliq.2018.12.001)
Butts CL, Kandala CVK, Sorensen RB, Lamb MC (2007) In-shell bulk density as an estimator of farmers stock grade factors. Peanut Sci 34(2):135–141. https://doi.org/10.3146/0095-3679(2007)34[135:ibdaae]2.0.co;2. (PMID: 10.3146/0095-3679(2007)34[135:ibdaae]2.0.co;2)
Crini G, Lichtfouse E, Wilson L, Crini NM (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17(1):195–213. https://doi.org/10.1007/s10311-018-0786-8. (PMID: 10.1007/s10311-018-0786-8)
Elmorsi RR, El-Wakeel ST, Shehab El-Dein WA (2019) Adsorption of methylene blue and Pb by using acid-activated Posidonia oceanica waste. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-39945-1. (PMID: 10.1038/s41598-019-39945-1)
Gu YF, Yang MM, Wang WL, Han RP (2019) Phosphate adsorption from solution by zirconium loaded carbon nanotubes in batch mode. J Chem Eng Data 64:2849–2858. https://doi.org/10.1021/acs.jced.9b00214. (PMID: 10.1021/acs.jced.9b00214)
Han RP, Wang YF, Han P, Shi J, Yang J, Lu YS (2006) Removal of methylene blue from aqueous solution by chaff in batch mode. J Hazard Mater 137:550–557. https://doi.org/10.1016/j.jhazmat.2006.02.029. (PMID: 10.1016/j.jhazmat.2006.02.029)
Han RP, Zou WH, Yu WH, Cheng SJ, Wang Y, Shi J (2007) Biosorption of methylene blue from aqueous solution by fallen phoenix tree’s leaves. J Hazard Mater 141(1):156–162. https://doi.org/10.1016/j.jhazmat.2006.06.107. (PMID: 10.1016/j.jhazmat.2006.06.107)
Han RP, Zhang JJ, Pan H, Wang YF, Zhao ZH, Tang MS (2009) Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite. Chem Eng J 145:496–504. https://doi.org/10.1016/j.cej.2008.05.003. (PMID: 10.1016/j.cej.2008.05.003)
Han RP, Zhang LJ, Song C, Zhang MM, Zhu HM, Zhang LJ (2010a) Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode. Carbohydr Polym 79(4):1140–1149. https://doi.org/10.1016/j.carbpol.2009.10.054. (PMID: 10.1016/j.carbpol.2009.10.054)
Han RP, Wang Y, Sun Q, Wang LL, Song JY, He XT, Dou CC (2010b) Malachite green adsorption onto natural zeolite and reuse by microwave irradiation. J Hazard Mater 175(1–3):1056–1061. https://doi.org/10.1016/j.jhazmat.2009.10.118. (PMID: 10.1016/j.jhazmat.2009.10.118)
Han Y, Cao X, Ouyang X, Sohi SP, Chen J (2016) Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: effects of production conditions and particle size. Chemosphere 145:336–341. https://doi.org/10.1016/j.chemosphere.2015.11.050. (PMID: 10.1016/j.chemosphere.2015.11.050)
Ho Y, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465. https://doi.org/10.1016/s0032-9592(98)00112-5. (PMID: 10.1016/s0032-9592(98)00112-5)
Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173. https://doi.org/10.1016/j.watres.2016.01.008. (PMID: 10.1016/j.watres.2016.01.008)
Hong S, Wen C, He J, Gan F, Ho YS (2009) Adsorption thermodynamics of methylene blue onto bentonite. J Hazard Mater 167(1–3):630–633. https://doi.org/10.1016/j.jhazmat.2009.01.014. (PMID: 10.1016/j.jhazmat.2009.01.014)
Hu Y, Guo T, Ye X, Li Q, Guo M, Liu H, Wu Z (2013) Dye adsorption by resins: effect of ionic strength on hydrophobic and electrostatic interactions. Chem Eng J 228:392–397. https://doi.org/10.1016/j.cej.2013.04.116. (PMID: 10.1016/j.cej.2013.04.116)
Kani AN, Dovi E, Mpatani FM, Li ZH, Han RP, Qu LP (2020) Tiger nut residue as a renewable adsorbent for methylene blue removal from solution: adsorption kinetics, isotherm, and thermodynamic studies. Desalin Water Treat 191:426–437. https://doi.org/10.5004/dwt.2020.25735.
Koh JH, Wankat PC, Wang NHL (1998) Pore and surface diffusion and bulk-phase mass transfer in packed and fluidized beds. Ind Eng Chem Res 37(1):228–239. https://doi.org/10.1021/ie970337i. (PMID: 10.1021/ie970337i)
Kumar R, Rashid J, Barakat MA (2014) Synthesis and characterization of a starch–AlOOH–FeS 2 nanocomposite for the adsorption of Congo red dye from aqueous solution. RSC Adv 4(72):38334–38340. https://doi.org/10.1039/c4ra05183a. (PMID: 10.1039/c4ra05183a)
Liu J, Li E, You X, Hu C, Huang Q (2016) Adsorption of methylene blue on an agro-waste oiltea shell with and without fungal treatment. Sci Rep 6(1):1–10. https://doi.org/10.1038/srep38450.
Liu J, Yu Y, Zhu S, Yang J, Song J, Fan W, Yu H, Bian D, Huo M (2018) Synthesis and characterization of a magnetic adsorbent from negatively-valued iron mud for methylene blue adsorption. PLoS One 13(2):e0191229. https://doi.org/10.1371/journal.pone.0191229. (PMID: 10.1371/journal.pone.0191229)
Mohammadi Torkashvand A, Alidoust M, Mahboub Khomami A (2015) The reuse of peanut organic wastes as a growth medium for ornamental plants. Int J Recycl Org Waste Agric 4(2):85–94. https://doi.org/10.1007/s40093-015-0088-0. (PMID: 10.1007/s40093-015-0088-0)
Mouni L, Belkhiri L, Bollinger JC, Bouzaza A, Assadi A, Tirri A, Remini H (2018) Removal of methylene blue from aqueous solutions by adsorption on kaolin: kinetic and equilibrium studies. Appl Clay Sci 153:38–45. https://doi.org/10.1016/j.clay.2017.11.034. (PMID: 10.1016/j.clay.2017.11.034)
Mpatani FM, Aryee AA, Kani AN, Wen K, Dovi E, Qu LB, Li ZH, Han RP (2020a) Removal of methylene blue from aqueous medium by citrate modified bagasse: kinetic, equilibrium and thermodynamic study. Bioresour Technol Rep 11:100463. https://doi.org/10.1016/j.biteb.2020.100463.
Mpatani FM, Aryee AA, Kani AN, Guo QH, Dovi E, Qu LB, Li ZH, Han RP (2020b) Uptake of micropollutant-Bisphenol A, methylene blue and neutral red onto bagasse-β-cyclodextrin polymer by adsorption process. Chemosphere 259:127439. https://doi.org/10.1016/j.chemosphere.2020.127439. (PMID: 10.1016/j.chemosphere.2020.127439)
Nindiyasari F, Griesshaber E, Zimmermann T, Manian AP, Randow C, Zehbe R, Schmahl WW (2015) Characterization and mechanical properties investigation of the cellulose/gypsum composite. J Compos Mater 50(5):657–672. https://doi.org/10.1177/0021998315580826. (PMID: 10.1177/0021998315580826)
Prithivirajan R, Jayabal S, Sundaram SK, Sangeetha V (2016) Hybrid biocomposites from agricultural residues: mechanical, water absorption and tribological behaviors. J Polym Eng 36(7):663–672. https://doi.org/10.1515/polyeng-2015-0113. (PMID: 10.1515/polyeng-2015-0113)
Razak MR, Yusof NA, Haron MJ, Ibrahim N, Mohammad F, Kamaruzaman S, Al-Lohedan HA (2018) Iminodiacetic acid modified kenaf fiber for waste water treatment. Int J Biol Macromol 112:754–760. https://doi.org/10.1016/j.ijbiomac.2018.02.035. (PMID: 10.1016/j.ijbiomac.2018.02.035)
Ren Y, Chen Y, Sun M, Peng H, Huang K (2014) Rapid and efficient removal of cationic dyes by magnetic chitosan adsorbent modified with EDTA. Sep Sci Technol 49(13):2049–2059. https://doi.org/10.1080/01496395.2014.903972. (PMID: 10.1080/01496395.2014.903972)
Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Sain M (2017) Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 102:822–828. https://doi.org/10.1016/j.ijbiomac.2017.04.074. (PMID: 10.1016/j.ijbiomac.2017.04.074)
Sadegh H, Ali GAM, Gupta VK, Makhlouf ASH, Shahryari-ghoshekandi R, Nadagouda MN, Megiel E (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostruct Chem 7(1):1–14. https://doi.org/10.1007/s40097-017-0219. (PMID: 10.1007/s40097-017-0219)
Silva VAJ, Andrade PL, Silva MPC, Bustamante DA, De Los Santos Valladares L, Albino Aguiar J (2013) Synthesis and characterization of Fe 3 O 4 nanoparticles coated with fucan polysaccharides. J Magn Magn Mater 343:138–143. https://doi.org/10.1016/j.jmmm.2013.04.062. (PMID: 10.1016/j.jmmm.2013.04.062)
Sivashankar R, Sathya AB, Vasantharaj K, Sivasubramanian V (2014) Magnetic composite an environmental super adsorbent for dye sequestration—a review. Environ Nanotechnol Monit Manag 1-2:36–49. https://doi.org/10.1016/j.enmm.2014.06.001. (PMID: 10.1016/j.enmm.2014.06.001)
Song JY, Zou WH, Bian YY, Su FY, Han RP (2011) Adsorption characteristics of methylene blue by peanut husk in batch and column modes. Desalination 265:119–125. https://doi.org/10.1016/j.desal.2010.07.041. (PMID: 10.1016/j.desal.2010.07.041)
Ünlü N, Günay K, Arslan M (2020) Efficient removal of cationic dyes from aqueous solutions using a modified poly(ethylene terephthalate) fibers adsorbent. Polym Plast Technol Mater 59(5):527–535. https://doi.org/10.1080/25740881.2019.1669650. (PMID: 10.1080/25740881.2019.1669650)
Vakiti A, Pilla R, Alhaj Moustafa M, Joseph JJ, Shenoy AG (2018) Ifosfamide-induced metabolic encephalopathy in 2 patients with cutaneous T-cell lymphoma successfully treated with methylene blue. J Investig Med High Impact Case Rep 6:1–4. https://doi.org/10.1177/2324709618786769. (PMID: 10.1177/2324709618786769)
Vargas AMM, Cazetta AL, Kunita MH, Silva TL, Almeida VC (2011) Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models. Chem Eng J 168(2):722–730. https://doi.org/10.1016/j.cej.2011.01.067. (PMID: 10.1016/j.cej.2011.01.067)
Virginia Carolinas Peanut Promotions Fact sheet on peanuts. https://www.aboutpeanuts.com/peanut-facts/95-types-of-peanuts . Accessed 28 April 2020.
Vutskits L, Briner A, Klauser P, Gascon E, Dayer AG (2008) Adverse effects of methylene blue on the central nervous system. Anesthesiology 108(4):684–692. https://doi.org/10.1097/ALN.0b013e3181684be4. (PMID: 10.1097/ALN.0b013e3181684be4)
Wan Ngah WS, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99:3935–3948. https://doi.org/10.1016/j.biortech.2007.06.011. (PMID: 10.1016/j.biortech.2007.06.011)
Wang J, Wu L, Li J, Tang D, Zhang G (2018) Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: adsorption kinetics and mechanism. J Alloys Compd 753:422–432. https://doi.org/10.1016/j.jallcom.2018.04.177. (PMID: 10.1016/j.jallcom.2018.04.177)
WHO (2017) https://www.who.int/news-room/detail/12-07-2017-2-1-billion-people-lack-safe-drinking-water-at-home-more-than-twice-as-many-lack-safe-sanitation . Accessed 2 Dec 2019.
Wu SH, Pendleton P (2001) Adsorption of anionic surfactant by activated carbon: effect of surface chemistry, ionic strength, and hydrophobicity. J Colloid Interface Sci 243:306–315. https://doi.org/10.1006/jcis.2001.7905. (PMID: 10.1006/jcis.2001.7905)
Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10. https://doi.org/10.1016/j.scitotenv.2012.02.023. (PMID: 10.1016/j.scitotenv.2012.02.023)
Xu X, Gao BY, Jin B, Yue QY (2016) Removal of anionic pollutants from liquids by biomass materials: a review. J Mol Liq 215:565–595. https://doi.org/10.1016/j.molliq.2015.12.101. (PMID: 10.1016/j.molliq.2015.12.101)
Yang MM, Li XY, Wang WL, Zhang SL, Han R (2019) Adsorption of methylene blue from solution by carboxylic multi-walled carbon nanotubes in batch mode. Desalin Water Treat 159:365–376. https://doi.org/10.5004/dwt.2019.24170. (PMID: 10.5004/dwt.2019.24170)
Zhang G, He Z, Xu W (2012) A low-cost and high efficient zirconium-modified-Na-attapulgite adsorbent for fluoride removal from aqueous solutions. Chem Eng J 183:315–324. https://doi.org/10.1016/j.cej.2011.12.085. (PMID: 10.1016/j.cej.2011.12.085)
Zhang Z, O’Hara IM, Kent GA, Doherty WOS (2013) Comparative study on adsorption of two cationic dyes by milled sugarcane bagasse. Ind Crop Prod 42:41–49. https://doi.org/10.1016/j.indcrop.2012.05.008. (PMID: 10.1016/j.indcrop.2012.05.008)
Zhang RD, Zhang JH, Zhang XN, Dou CC, Han RP (2014) Adsorption of congo red from aqueous solutions using cationic surfactant modified wheat straw in batch mode: kinetic and equilibrium study. J Taiwan Inst Chem E 45:2578–2583. https://doi.org/10.1016/j.jtice.2014.06.009. (PMID: 10.1016/j.jtice.2014.06.009)
Zhao BL, Xiao W, Shang Y, Zhu HM, Han RP (2017) Adsorption of light green anionic dye using cationic surfactant-modified peanut husk in batch mode. Arab J Chem 10:s3595–s3602. https://doi.org/10.1016/j.arabjc.2014.03.010. (PMID: 10.1016/j.arabjc.2014.03.010)
Zhou T, Lu WZ, Liu LF, Zhu HM, Jiao YB, Zhang SS, Han RP (2015) Effective adsorption of light green anionic dye from solution by CPB modified peanut in column mode. J Mol Liq 211:909–914. https://doi.org/10.1016/j.molliq.2015.08.018. (PMID: 10.1016/j.molliq.2015.08.018)
Zhou X, Zhou J, Liu Y, Guo J, Ren J, Zhou F (2018) Preparation of iminodiacetic acid-modified magnetic biochar by carbonization, magnetization and functional modification for Cd(II) removal in water. Fuel 233:469–479. https://doi.org/10.1016/j.fuel.2018.06.075. (PMID: 10.1016/j.fuel.2018.06.075)
Zou W, Bai H, Gao S, Zhao X, Han R (2012) Investigations on the batch performance of cationic dyes adsorption by citric acid modified peanut husk. Desalin Water Treat 49(1–3):41–56. https://doi.org/10.1080/19443994.2012.708197. (PMID: 10.1080/19443994.2012.708197)
Grant Information:
21974125 National Natural Science Foundation of China; 19A150048 Key Scientific Research Project of Colleges and Universities in Henan Province
Contributed Indexing:
Keywords: Adsorption; IDA-modified magnetic peanut husk; Methylene blue; Regeneration
Substance Nomenclature:
0 (Imino Acids)
0 (Water Pollutants, Chemical)
T42P99266K (Methylene Blue)
XQM2L81M8Z (iminodiacetic acid)
Entry Date(s):
Date Created: 20200716 Date Completed: 20201013 Latest Revision: 20210713
Update Code:
20240105
DOI:
10.1007/s11356-020-10087-6
PMID:
32666444
Czasopismo naukowe
A novel adsorbent PN-Fe 3 O 4 -IDA was developed by the chemical modification of magnetic peanut husk with iminodiacetic acid (IDA) and its efficacy for the sequestration of cationic dyes assessed using methylene blue (MB) as a model. This modification process enhanced the adsorption capacity of peanut husk as an adsorbent for dye sequestration and at the same time greatly minimized the adverse effects associated with its use in the pristine state. Results from the batch adsorption studies indicated that the uptake of MB onto PN-Fe 3 O 4 -IDA increased with MB concentration, contact time, temperature and pH whereas it decreased in the presence of some common salts. The pseudo-second-order kinetic model was observed to best describe the adsorption process which may greatly be influenced by the intra particle diffusion mass transfer. A maximum monolayer adsorption capacity of 43.5 mg g -1 was observed at 313 K according to the Langmuir model. There was good property of regeneration for MB-loaded PN-Fe 3 O 4 -IDA. Based on these results, as well as other unique features such as easy separation and preparation under benign environmental conditions, PN-Fe 3 O 4 -IDA exhibits great potential for the removal of MB and other cationic pollutants in practical applications with easy separation from solution using external magnet. Graphical abstract.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies