Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

VOC fingerprints: metabolomic signatures of biothreat agents with and without antibiotic resistance.

Tytuł:
VOC fingerprints: metabolomic signatures of biothreat agents with and without antibiotic resistance.
Autorzy:
Dailey A; Department of Chemistry and Biochemistry, George Mason University, Manassas, VA, USA.
Saha J; Department of Chemistry and Biochemistry, George Mason University, Manassas, VA, USA.
Zaidi F; Department of Chemistry and Biochemistry, George Mason University, Manassas, VA, USA.
Abdirahman H; Department of Chemistry and Biochemistry, George Mason University, Manassas, VA, USA.
Haymond A; Department of Chemistry and Biochemistry, George Mason University, Manassas, VA, USA.
Alem F; National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA.
Hakami R; National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA.
Couch R; Department of Chemistry and Biochemistry, George Mason University, Manassas, VA, USA. .
Źródło:
Scientific reports [Sci Rep] 2020 Jul 16; Vol. 10 (1), pp. 11746. Date of Electronic Publication: 2020 Jul 16.
Typ publikacji:
Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Metabolomics/*methods
Tularemia/*metabolism
Volatile Organic Compounds/*metabolism
Animals ; Betacoronavirus/isolation & purification ; COVID-19 ; Coronavirus Infections/epidemiology ; Coronavirus Infections/metabolism ; Coronavirus Infections/virology ; Disease Outbreaks ; Drug Resistance, Microbial/drug effects ; Drug Resistance, Microbial/genetics ; Female ; Francisella tularensis/drug effects ; Francisella tularensis/isolation & purification ; Francisella tularensis/metabolism ; Kanamycin/pharmacology ; Mice ; Mice, Inbred BALB C ; Pandemics ; Pneumonia, Viral/epidemiology ; Pneumonia, Viral/metabolism ; Pneumonia, Viral/virology ; SARS-CoV-2 ; Solid Phase Microextraction ; Tularemia/microbiology ; Tularemia/pathology ; Tularemia/veterinary ; Volatile Organic Compounds/analysis ; Volatile Organic Compounds/isolation & purification ; Yersinia pestis/drug effects ; Yersinia pestis/isolation & purification ; Yersinia pestis/metabolism
References:
Lazcka, O., Del Campo, F. J. & Muñoz, F. X. Pathogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron. 22, 1205–1217 (2007). (PMID: 10.1016/j.bios.2006.06.036)
Lasch, P. et al. Identification of highly pathogenic microorganisms by matrix-assisted laser desorption ionization-time of flight mass spectrometry: results of an interlaboratory ring trial. J. Clin. Microbiol. 53, 2632–2640 (2015). (PMID: 10.1128/JCM.00813-15)
Singhal, N., Kumar, M., Kanaujia, P. K. & Virdi, J. S. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 6, 791 (2015). (PMID: 10.3389/fmicb.2015.00791)
Couch, R. D. et al. Alcohol induced alterations to the human fecal VOC metabolome. PLoS ONE 10, e0119362 (2015). (PMID: 10.1371/journal.pone.0119362)
Couch, R. D. et al. The approach to sample acquisition and its impact on the derived human fecal microbiome and VOC metabolome. PLoS ONE 8, e81163 (2013). (PMID: 10.1371/journal.pone.0081163)
Li, R. W. et al. Alterations in the porcine colon microbiota induced by the gastrointestinal nematode Trichuris suis. Infect. Immun. 80, 2150–2157 (2012). (PMID: 10.1128/IAI.00141-12)
Dixon, E. et al. Solid-phase microextraction and the human fecal VOC metabolome. PLoS ONE 6, e18471 (2011). (PMID: 10.1371/journal.pone.0018471)
Bos, L. D. J., Sterk, P. J. & Schultz, M. J. Volatile metabolites of pathogens: a systematic review. PLoS Pathog. 9, e1003311 (2013). (PMID: 10.1371/journal.ppat.1003311)
Tait, E., Perry, J. D., Stanforth, S. P. & Dean, J. R. Identification of volatile organic compounds produced by bacteria using HS-SPME-GC–MS. J. Chromatogr. Sci. 52, 363–373 (2014). (PMID: 10.1093/chromsci/bmt042)
Zhu, J., Bean, H. D., Kuo, Y.-M. & Hill, J. E. Fast detection of volatile organic compounds from bacterial cultures by secondary electrospray ionization-mass spectrometry. J. Clin. Microbiol. 48, 4426–4431 (2010). (PMID: 10.1128/JCM.00392-10)
Lim, S. H. et al. Colorimetric sensor array allows fast detection and simultaneous identification of sepsis-causing bacteria in spiked blood culture. J. Clin. Microbiol. 52, 592–598 (2014). (PMID: 10.1128/JCM.02377-13)
Mellors, T. R., Rees, C. A., Wieland-Alter, W. F., von Reyn, C. F. & Hill, J. E. The volatile molecule signature of four mycobacteria species. J. Breath Res. 11, 031002 (2017). (PMID: 10.1088/1752-7163/aa6e06)
Rees, C. A. et al. Detection of high-risk carbapenem-resistant Klebsiella pneumoniae and Enterobacter cloacae isolates using volatile molecular profiles. Sci. Rep. 8, 13297 (2018). (PMID: 10.1038/s41598-018-31543-x)
Conchas, R. F. & Carniel, E. A highly efficient electroporation system for transformation of Yersinia. Gene 87, 133–137 (1990). (PMID: 10.1016/0378-1119(90)90505-L)
Maier, T. M. et al. Construction and characterization of a highly efficient Francisella shuttle plasmid. Appl. Environ. Microbiol. 70, 7511–7519 (2004). (PMID: 10.1128/AEM.70.12.7511-7519.2004)
Arthur, C. L. & Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 62, 2145–2148 (1990). (PMID: 10.1021/ac00218a019)
Pawliszyn, J. Theory of solid phase microextraction. J. Chromatogr. Sci. 38, 270–278 (2000). (PMID: 10.1093/chromsci/38.7.270)
Agar, S. L. et al. Characterization of a mouse model of plague after aerosolization of Yersinia pestis CO92. Microbiol. Read. Engl. 154, 1939–1948 (2008). (PMID: 10.1099/mic.0.2008/017335-0)
Anderson, N. W. et al. Effects of solid-medium type on routine identification of bacterial isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 50, 1008–1013 (2012). (PMID: 10.1128/JCM.05209-11)
Wieme, A. D. et al. Effects of growth medium on matrix-assisted laser desorption-ionization time of flight mass spectra: a case study of acetic acid bacteria. Appl. Environ. Microbiol. 80, 1528–1538 (2014). (PMID: 10.1128/AEM.03708-13)
Chudobova, D. et al. The effect of metal ions on Staphylococcus aureus revealed by biochemical and mass spectrometric analyses. Microbiol. Res. 170, 147–156 (2015). (PMID: 10.1016/j.micres.2014.08.003)
Blundell, M. R. & Wild, D. G. Inhibition of bacterial growth by metal salts. A survey of effects on the synthesis of ribonucleic acid and protein. Biochem. J. 115, 207–212 (1969). (PMID: 10.1042/bj1150207)
Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. ISME J. https://www.nature.com/articles/s41396-018-0224-8 .
Zampieri, M., Zimmermann, M., Claassen, M. & Sauer, U. Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations. Cell Rep. 19, 1214–1228 (2017). (PMID: 10.1016/j.celrep.2017.04.002)
Meksuriyen, D. et al. Formation of a complex containing ATP, Mg2+, and spermine structural evidence and biological significance. J. Biol. Chem. 273, 30939–30944 (1998). (PMID: 10.1074/jbc.273.47.30939)
Patel, C. N. et al. Polyamines are essential for the formation of plague biofilm. J. Bacteriol. 188, 2355–2363 (2006). (PMID: 10.1128/JB.188.7.2355-2363.2006)
Champion, A. E., Catanzaro, K. C. F., Bandara, A. B. & Inzana, T. J. Formation of the Francisella tularensis biofilm is affected by cell surface glycosylation, growth medium, and a glucan exopolysaccharide. Sci. Rep. 9, 1–15 (2019). (PMID: 10.1038/s41598-019-48697-x)
Kshirsagar, U. A. Recent developments in the chemistry of quinazolinone alkaloids. Org. Biomol. Chem. 13, 9336–9352 (2015). (PMID: 10.1039/C5OB01379H)
Shang, X.-F. et al. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev. 38, 775–828 (2018). (PMID: 10.1002/med.21466)
Shang, X.-F. et al. Biologically active quinoline and quinazoline alkaloids part II. Med. Res. Rev. 38, 1614–1660 (2018). (PMID: 10.1002/med.21492)
Drew, S. W. & Demain, A. L. Effect of primary metabolites on secondary metabolism. Annu. Rev. Microbiol. 31, 343–356 (1977). (PMID: 10.1146/annurev.mi.31.100177.002015)
Zhou, D. et al. Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus. J. Bacteriol. 186, 5147–5152 (2004). (PMID: 10.1128/JB.186.15.5147-5152.2004)
Lindsey, G. A. & Rhines, C. M. The production of hydroxylamine by the reduction of nitrates and nitrites by various pure cultures of bacteria 1. J. Bacteriol. 24, 489–492 (1932). (PMID: 10.1128/JB.24.6.489-492.1932)
González, P. J., Correia, C., Moura, I., Brondino, C. D. & Moura, J. J. G. Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. J. Inorg. Biochem. 100, 1015–1023 (2006). (PMID: 10.1016/j.jinorgbio.2005.11.024)
Rakin, A., Schneider, L. & Podladchikova, O. Hunger for iron: the alternative siderophore iron scavenging systems in highly virulent Yersinia. Front. Cell. Infect. Microbiol. 2, 151 (2012). (PMID: 10.3389/fcimb.2012.00151)
Woolfenden, E. Thermal desorption for gas chromatography. in Gas Chromatography (Elsevier, 2012).
Grant Information:
HDTRA1-16-1-0040 International United States Department of Defense | Defense Threat Reduction Agency (DTRA)
Substance Nomenclature:
0 (Volatile Organic Compounds)
59-01-8 (Kanamycin)
Entry Date(s):
Date Created: 20200718 Date Completed: 20200812 Latest Revision: 20210716
Update Code:
20240105
PubMed Central ID:
PMC7367350
DOI:
10.1038/s41598-020-68622-x
PMID:
32678173
Czasopismo naukowe
Category A and B biothreat agents are deemed to be of great concern by the US Centers for Disease Control and Prevention (CDC) and include the bacteria Francisella tularensis, Yersinia pestis, Burkholderia mallei, and Brucella species. Underscored by the impact of the 2020 SARS-CoV-2 outbreak, 2016 Zika pandemic, 2014 Ebola outbreak, 2001 anthrax letter attacks, and 1984 Rajneeshee Salmonella attacks, the threat of future epidemics/pandemics and/or terrorist/criminal use of pathogenic organisms warrants continued exploration and development of both classic and alternative methods of detecting biothreat agents. Volatile organic compounds (VOCs) comprise a large and highly diverse group of carbon-based molecules, generally related by their volatility at ambient temperature. Recently, the diagnostic potential of VOCs has been realized, as correlations between the microbial VOC metabolome and specific bacterial pathogens have been identified. Herein, we describe the use of microbial VOC profiles as fingerprints for the identification of biothreat-relevant microbes, and for differentiating between a kanamycin susceptible and resistant strain. Additionally, we demonstrate microbial VOC profiling using a rapid-throughput VOC metabolomics method we refer to as 'simultaneous multifiber headspace solid-phase microextraction' (simulti-hSPME). Finally, through VOC analysis, we illustrate a rapid non-invasive approach to the diagnosis of BALB/c mice infected with either F. tularensis SCHU S4 or Y. pestis CO92.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies