Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Identification and validation of genetic loci for tiller angle in bread wheat.

Tytuł:
Identification and validation of genetic loci for tiller angle in bread wheat.
Autorzy:
Zhao D; Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.; College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi province, China.
Yang L; Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
Xu K; Institute of Cotton Research, CAAS, 38 Huanghe Dadao, Anyang, 455000, Henan province, China.
Cao S; Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
Tian Y; Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
Yan J; Institute of Cotton Research, CAAS, 38 Huanghe Dadao, Anyang, 455000, Henan province, China.
He Z; Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.; CIMMYT-China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China.
Xia X; Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
Song X; College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi province, China. .
Zhang Y; Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China. .
Źródło:
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik [Theor Appl Genet] 2020 Nov; Vol. 133 (11), pp. 3037-3047. Date of Electronic Publication: 2020 Jul 19.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin, New York, Springer
MeSH Terms:
Quantitative Trait Loci*
Plant Stems/*anatomy & histology
Triticum/*genetics
Amino Acid Sequence ; Chromosome Mapping ; Chromosomes, Plant ; Genetic Markers ; Phenotype ; Plant Breeding ; Polymorphism, Single Nucleotide
References:
Cao X, Deng M, Zhang Z-L, Liu Y-J, Yang X-L, Zhou H, Zhang Z-J (2017) Molecular characterization and expression analysis of TaTAC1 gene in Triticum aestivum L. J Plant Genet Resour 18:125–132.
Dardick C, Callahan A, Horn R, Ruiz KB, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R (2013) PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J 75:618–630. (PMID: 23663106)
Deng S, Wu X, Wu Y, Zhou R, Wang H, Jia J, Liu S (2011) Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet 122:281–289. (PMID: 20872211)
Dixon LE, Greenwood JR, Benvivegna S, Zhang P, Cockram J, Mellers G, Ramm K, Cavanagh C, Swain SM, Boden SA (2018) TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). Plant Cell 30:563–581. (PMID: 294448135894836)
Dong H, Zhao H, Xie W, Han Z, Li G, Yao W, Bai X, Hu Y, Guo Z, Lu K, Yang L, Xing Y (2016) A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genet 12:e1006412. (PMID: 278143575096673)
Ford BA, Foo E, Sharwood R, Karafiatova M, Vrána J, MacMillan C, Nichols DS, Steuernagel B, Uauy C, Doležel J, Chandler PM, Spielmeyer W (2018) Rht18 semidwarfism in wheat is due to increased GA 2-oxidaseA9 expression and reduced GA content. Plant Physiol 177:168–180. (PMID: 295452695933146)
Griffiths S, Simmonds J, Leverington M, Wang Y, Fish LJ, Sayers L, Alibert L, Orford S, Wingen L, Snape J (2012) Meta-QTL analysis of the genetic control of crop height in elite. European winter wheat germplasm. Mol Breed 29:159–171.
He J, Shao G, Wei X, Huang F, Sheng Z, Tang S, Hu P (2017) Fine mapping and candidate gene analysis of qTAC8, a major quantitative trait locus controlling tiller angle in rice (Oryza sativa L.). PLoS One 12:e0178177. (PMID: 285424275444791)
Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112.
Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900–2910. (PMID: 14615594282825)
Hu Y, Ren T, Li Z, Tang Y, Ren Z, Yan B (2017) Molecular mapping and genetic analysis of a QTL controlling spike formation rate and tiller number in wheat. Gene 634:15–21. (PMID: 28867565)
Isidro J, Knox R, Clarke F, Singh A, Depauw R, Clarke J, Somers D (2012) Quantitative genetic analysis and mapping of leaf angle in durum wheat. Planta 236:1713–1723. (PMID: 22868576)
Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121.
Kuraparthy V, Sood S, Dhaliwal HS, Chhuneja P, Gill BS (2007) Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet 114:285–294. (PMID: 17115129)
Lewis JM, Mackintosh CA, Shin S, Gilding E, Kravchenko S, Baldridge G, Zeyen R, Muehlbauer GJ (2008) Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development. Plant Cell Rep 27:1217–1225. (PMID: 18392625)
Li Z, Paterson AH, Pinson SRM, Stansel JW (1999) RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica 109:79–84.
Li C, Zhou A, Sang T (2006) Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol 170:185–194. (PMID: 16539615)
Li P, Wang Y, Qian Q, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J (2007) LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 17:402–410. (PMID: 17468779)
Li Z, Peng T, Xie Q, Han S, Tian J (2010) Mapping of QTL for tiller number at different stages of growth in wheat using double haploid and immortalized F 2 populations. J Genet 89:409–415. (PMID: 21273691)
Liu K, Xu H, Liu G, Guan P, Zhou X, Peng H, Yao Y, Ni Z, Sun Q, Du J (2018) QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theor Appl Genet 131:839–849. (PMID: 293592635852184)
Liu K, Cao J, Yu K, LiuX Gao Y, Chen Q, Zhang W, Peng H, Du J, Xin M, Hu Z, Guo W, Rossi V, Ni Z, Sun Q, Yao Y (2019) Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling. Plant Physiol 181:179–194. (PMID: 312091256716241)
Mo Y, Vanzetti LS, Hale I, Spagnolo EJ, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J (2018) Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor Appl Genet 131:2021–2035. (PMID: 29959472)
Mu J, Huang S, Liu S, Zeng Q, Dai M, Wang Q, Wu J, Yu S, Kang Z, Han D (2019) Genetic architecture of wheat stripe rust resistance revealed by combining QTL mapping using SNP-based genetic maps and bulked segregant analysis. Theor Appl Genet 132:443–455. (PMID: 30446795)
Naruoka Y, Talbert LE, Lanning SP, Blake NK, Martin JM, Sherman JD (2011) Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor Appl Genet 123:1043–1053. (PMID: 21751014)
Nasseer AM, Martin JM, Heo HY, Blake NK, Sherman JD, Pumphrey M, Kephart KD, Lanning SP, Naruoka Y, Talbert LE (2016) Impact of a quantitative trait locus for tiller number on plasticity of agronomic traits in spring wheat. Crop Sci 56:595–602.
Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, Hedden P, Nicholson P, Thomas SG (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831. (PMID: 220132183327217)
Peng Z-S, Yen C, Yang J-L (1998) Genetic control of oligo-culms character in common wheat. Wheat Inf Serv 86:19–24.
Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261. (PMID: 10421366)
Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15.
Qian Q, He P, Teng S, Zeng D-L, Zhu L-H (2001) QTLs analysis of tiller angle in rice (Oryza sativa L.). Acta Genetica Sin 28:29–32.
Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C (2015a) RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J 13:613–624. (PMID: 25382230)
Ramirez-Gonzalez RH, Uauy C, Caccamo M (2015b) PolyMarker: a fast polyploid primer design pipeline. Bioinformatics 31:2038–2039. (PMID: 256496184765872)
Ren T, Hu Y, Tang Y, Li C, Yan B, Ren Z, Tan F, Tang Z, Fu S, Li Z (2018) Utilization of a wheat 55 K SNP array for mapping of major QTL for temporal expression of the tiller number. Front Plant Sci 9:333. (PMID: 295997935862827)
Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101–1108. (PMID: 18546601)
Spielmeyer W, Richards RA (2004) Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor Appl Genet 109:1303–1310. (PMID: 15448895)
Sun L, Yang W, Li Y, Shan Q, Ye X, Wang D, Yu K, Lu W, Xin P, Pei Z, Guo X, Liu D, Sun J, Zhan K, Chu J, Zhang A (2019) A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. Plant J 97:887–900. (PMID: 30466195)
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Hideki I, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183. (PMID: 23289725)
Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493. (PMID: 12736777)
Tian X, Wen W, Xie L, Fu L, Xu D, Fu C, Wang D, Chen X, Xia X, Chen Q, He Z, Cao S (2017) Molecular mapping of reduced plant height gene Rht24 in bread wheat. Front Plant Sci 8:1379. (PMID: 288485825550838)
Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279. (PMID: 18444901)
Wang Z, Liu Y, Shi H, Mo H, Wu F, Lin Y, Gao S, Wang J, Wei Y, Liu C, Zheng Y (2016) Identification and validation of novel low-tiller number QTL in common wheat. Theor Appl Genet 129:603–612. (PMID: 26804619)
Wang Y, Xie J, Zhang H, Guo B, Ning S, Chen Y, Lu P, Wu Q, Li M, Zhang D, Guo G, Zhang Y, Liu D, Zou S, Tang J, Zhao H, Wang X, Li J, Yang W, Cao T, Yin G, Liu Z (2017) Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor Appl Genet 130:2191–2201. (PMID: 28711956)
Wu J, Kong X, Wan J, Liu X, Zhang X, Guo X, Zhou R, Zhao G, Jing R, Fu X, Jia J (2011) Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiol 157:2120–2130. (PMID: 220101073327208)
Wu Q, Chen Y, Fu L, Zhou S, Chen J, Zhao X, Zhang D, Ouyang S, Wang Z, Li D, Wang G, Zhang D, Yuan C, Wang L, You M, Han J, Liu Z (2016) QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica 208:337–351.
Wu J, Liu S, Wang Q, Zeng Q, Mu J, Huang S, Yu S, Han D, Kang Z (2018a) Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes. Theor Appl Genet 131:43–58. (PMID: 28965125)
Wu J, Huang S, Zeng Q, Liu S, Wang Q, Mu J, Yu S, Han D, Kang Z (2018b) Comparative genome-wide mapping versus extreme pool-genotyping and development of diagnostic SNP markers linked to QTL for adult plant resistance to stripe rust in common wheat. Theor Appl Genet 131:1777–1792. (PMID: 29909527)
Würschum T, Langer SM, Longin CF (2015) Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet 128:865–874. (PMID: 25687129)
Xu Y, Shen Z, Xu J, Zhu H, Chen Y, Zhu L (1995) Interval mapping of quantitative trait loci by molecular markers in rice (Oryza sativa L.). Sci China Ser B-Chem 38:422–428.
Xu T, Bian N, Wen M, Xiao J, Yuan C, Cao A, Zhang S, Wang X, Wang H (2017) Characterization of a common wheat (Triticum aestivum L.) high-tillering dwarf mutant. Theor Appl Genet 130:483–494. (PMID: 27866225)
Yan J, Zhu J, He C, Benmoussa M, Wu P (1999) Molecular marker-assisted dissection of genotype × environment interaction for plant type traits in rice (Oryza sativa L.). Crop Sci 39:538–544.
Yang L, Zhao D, Meng Z, Xu K, Yan J, Xia X, Cao S, Tian Y, He Z, Zhang Y (2020) QTL mapping for grain yield-related traits in bread wheat via SNP-based selective genotyping. Theor Appl Genet 133:857–872. (PMID: 31844965)
Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52:891–898. (PMID: 17908158)
Zhang J, Wu J, Liu W, Lu X, Yang X, Gao A, Li X, Lu Y, Li L (2013) Genetic mapping of a fertile tiller inhibition gene, ftin, in wheat. Mol Breeding 31:441–449.
Grant Information:
2016YFD0101802 the National Key Research and Development Programs of China; 2016YFD0100502 the National Key Research and Development Programs of China; 2016YFE0108600 the National Key Research and Development Programs of China; ZDRW202002 CAAS
Substance Nomenclature:
0 (Genetic Markers)
Entry Date(s):
Date Created: 20200721 Date Completed: 20210415 Latest Revision: 20231127
Update Code:
20240104
DOI:
10.1007/s00122-020-03653-6
PMID:
32685984
Czasopismo naukowe
Key Message: Two major QTL for tiller angle were identified on chromosomes 1AL and 5DL, and TaTAC-D1 might be the candidate gene for QTA.caas-5DL. An ideal plant architecture is important for achieving high grain yield in crops. Tiller angle (TA) is an important factor influencing yield. In the present study, 266 recombinant inbred lines (RILs) derived from a cross between Zhongmai 871 (ZM871) and its sister line Zhongmai 895 (ZM895) was used to map TA by extreme pool-genotyping and inclusive composite interval mapping (ICIM). Two quantitative trait loci (QTL) on chromosomes 1AL and 5DL were identified with reduced tiller angle alleles contributed by ZM895. QTA.caas-1AL was detected in six environments, explaining 5.4-11.2% of the phenotypic variances. The major stable QTL, QTA.caas-5DL, was identified in all eight environments, accounting for 13.8-24.8% of the phenotypic variances. The two QTL were further validated using BC 1 F 4 populations derived from backcrosses ZM871/ZM895//ZM871 (121 lines) and ZM871/ZM895//ZM895 (175 lines). Gene TraesCS5D02G322600, located in the 5DL QTL and designated TaTAC-D1, had a SNP in the third exon with 'A' and 'G' in ZM871 and ZM895, respectively, resulting in a Thr169Ala amino acid change. A KASP marker based on this SNP was validated in two sets of germplasm, providing further evidence for the significant effects of TaTAC-D1 on TA. Thus extreme pool-genotyping can be employed to detect QTL for plant architecture traits and KASP markers tightly linked with the QTL can be used in wheat breeding programs targeting improved plant architecture.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies