Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The rhythm of attention: Perceptual modulation via rhythmic entrainment is lowpass and attention mediated.

Tytuł:
The rhythm of attention: Perceptual modulation via rhythmic entrainment is lowpass and attention mediated.
Autorzy:
Farahbod H; Department of Cognitive Sciences, University of California, Irvine, CA, USA.
Saberi K; Department of Cognitive Sciences, University of California, Irvine, CA, USA. .
Hickok G; Department of Cognitive Sciences, University of California, Irvine, CA, USA.; Department of Language Science, University of California, Irvine, CA, USA.
Źródło:
Attention, perception & psychophysics [Atten Percept Psychophys] 2020 Oct; Vol. 82 (7), pp. 3558-3570.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2011- : New York : Springer
Original Publication: Austin, Tex. : Psychonomic Society
MeSH Terms:
Noise*
Perceptual Masking*
Acoustic Stimulation ; Attention ; Auditory Threshold ; Cues ; Humans
References:
Barton, B., Venezia, J. H., Saberi, K., Hickok, G., & Brewer, A. (2012). Orthogonal acoustic dimensions define auditory field maps in human cortex. Proceedings of the National Academy of Sciences of the United States of America, 109, 20738–20743. doi: https://doi.org/10.1073/pnas.1213381109. (PMID: 10.1073/pnas.1213381109231887983528571)
Baumann, S., Griffiths, T. D., Sun, L., Petkov, C. I., Thiele, A., & Rees, A. (2011). Orthogonal representation of sound dimensions in the primate midbrain. Nature Neuroscience, 14, 423–425. doi: https://doi.org/10.1038/nn.2771. (PMID: 10.1038/nn.2771213789723068195)
Bilecen, D., Seifritz, E., Scheffler, K., Henning, J., & Schulte, A.C. (2002). Amplitopicity of the human auditory cortex: an fMRI study. NeuroImage, 17, 710–718. doi: https://doi.org/10.1006/nimg.2002.1133. (PMID: 10.1006/nimg.2002.113312377146)
Bonino, A. Y., & Leibold, L. J. (2008). The effect of signal-temporal uncertainty on detection in bursts of noise or a random-frequency complex. Journal of the Acoustical Society of America, 124, EL321–EL327. doi: https://doi.org/10.1121/1.2993745. (PMID: 10.1121/1.299374519045685)
Bonino, A. Y., Leibold, L. J., & Buss, E. (2013). Effect of signal-temporal uncertainty in children and adults: Tone detection in noise or a random frequency masker. Journal of the Acoustical Society of America, 134, 4446–4457. doi: https://doi.org/10.1121/1.4828828. (PMID: 10.1121/1.482882825669256)
Bourbon, W. T., Hafter, E. R., & Evans, T. R. (1966). Frequency and time uncertainty in auditory detection. Journal of the Acoustical Society of America, 39, 1247. doi: https://doi.org/10.1121/1.1942836. (PMID: 10.1121/1.1942836)
Buzsáki, G. (2006). Rhythms of the brain. Oxford, England: Oxford University Press. doi: https://doi.org/10.1093/acprof:oso/9780195301069.001.0001. (PMID: 10.1093/acprof:oso/9780195301069.001.0001)
Dai, H., & Wright, B. A. (1995). Detecting signals of unexpected or uncertain durations. Journal of the Acoustical Society of America, 98, 798–806. doi: https://doi.org/10.1121/1.413572. (PMID: 10.1121/1.4135727642818)
Dai, H., Scharf, B., & Buus, S. (1991). Effective attenuation of signals in noise under focused attention. Journal of the Acoustical Society of America, 89, 2837–2842. doi: https://doi.org/10.1121/1.400721. (PMID: 10.1121/1.4007211918627)
Dau, T., Püschel, D., & Kohlrausch, A., (1996). A quantitative model of the “effective” signal processing in the auditory system: I. Model structure. Journal of the Acoustical Society of America, 99, 3615–3622. doi: https://doi.org/10.1121/1.414959. (PMID: 10.1121/1.4149598655793)
Dau, T., Kollmeier, B., & Kohlrausch, A., (1997). Modeling auditory processing of amplitude modulation: II. Spectral and temporal integration. Journal of the Acoustical Society of America, 102, 2906–2919. doi: https://doi.org/10.1121/1.420345. (PMID: 10.1121/1.4203459373977)
Dieterich, R., Endrass, T., & Kathmann, N. (2016). Uncertainty is associated with increased selective attention and sustained stimulus processing. Cognitive, Affective, & Behavioral Neuroscience, 16, 447–456. doi: https://doi.org/10.3758/s13415-016-0405-8. (PMID: 10.3758/s13415-016-0405-8)
Eddins, D. A. (1993). Amplitude modulation detection of narrow-band noise—Effects of absolute bandwidth and frequency region. Journal of the Acoustical Society of America, 93, 470–479. doi: https://doi.org/10.1121/1.405627. (PMID: 10.1121/1.405627)
Eddins, D. A. (1999). Amplitude-modulation detection at low- and high-audio frequencies. Journal of the Acoustical Society of America, 105, 829–837. doi: https://doi.org/10.1121/1.426272. (PMID: 10.1121/1.4262729972568)
Eddins, D. A., & Bero, E. M. (2007). Spectral modulation detection as a function of modulation frequency, carrier bandwidth, and carrier frequency region. Journal of the Acoustical Society of America, 121, 363–372. doi: https://doi.org/10.1121/1.2382347. (PMID: 10.1121/1.238234717297791)
Elemans, C. P. H., Heeck, K., & Muller, M. (2008). Spectrogram analysis of animal sound production. Bioacoustics: The international Journal of Animal Sound and its Recording, 18, 183–212. doi: https://doi.org/10.1080/09524622.2008.9753599. (PMID: 10.1080/09524622.2008.9753599)
Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704–716. doi: https://doi.org/10.1038/35094565. (PMID: 10.1038/3509456511584308)
Festen, J. M., & Plomp, R. (1990). Effects of fluctuating noise and interfering speech on the speech-reception threshold for impaired and normal hearing. Journal of the Acoustical Society of America, 88, 1725–1736. doi: https://doi.org/10.1121/1.400247. (PMID: 10.1121/1.4002472262629)
Fiebelkorn, I. C., Saalmann, Y. B., & Kastner, S. (2013). Rhythmic sampling within and between objects despite sustained attention at a cued location. Current Biology, 23, 2553–2558. doi: https://doi.org/10.1016/j.cub.2013.10.063. (PMID: 10.1016/j.cub.2013.10.06324316204)
Giraud, A. L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15, 511–517. doi: https://doi.org/10.1038/nn.3063. (PMID: 10.1038/nn.3063224262554461038)
Hafter, E. R., & Saberi, K. (2001). A level of stimulus representation model for auditory detection and attention. Journal of the Acoustical Society of America, 110, 1489–1497. https://doi.org/10.1121/1.1394220.
Hickok, G., Farahbod, H., & Saberi, K. (2015). The rhythm of perception: Entrainment to acoustic rhythms induces subsequent perceptual oscillation. Psychological Science, 26, 1006–1013. doi: https://doi.org/10.1177/0956797615576533. (PMID: 10.1177/0956797615576533259682484504793)
Ho, H. T., Leung, J., Burr, D. C., Alais, D., & Morrone, M. C. (2017). Auditory sensitivity and decision criteria oscillate at different frequencies separately for the two ears. Current Biology, 27, 3643–3649. doi: https://doi.org/10.1016/j.cub.2017.10.017. (PMID: 10.1016/j.cub.2017.10.01729153327)
Holdsworth, J., Nimmo-Smith, I., Patterson, R., & Rice, P. (1988). Implementing a GammaTone filter bank [SVOS Final Report: Annex C. Part A, the Auditory Filter Bank]. Cambridge, England: Medical Research Council Applied Psychology Unit.
Hopkins, K., & Moore, B. C. J. (2009). The contribution of temporal fine structure to the intelligibility of speech in steady and modulated noise. Journal of the Acoustical Society of America, 125, 442–446. doi: https://doi.org/10.1121/1.3037233. (PMID: 10.1121/1.303723319173429)
Hsieh, I., & Saberi, K. (2010). Detection of sinusoidal amplitude modulation in logarithmic frequency sweeps across wide regions of the spectrum. Hearing Research, 262, 9–18. doi: https://doi.org/10.1016/j.heares.2010.02.002. (PMID: 10.1016/j.heares.2010.02.002201447003045847)
Hsieh, I., Petrosyan, A., Goncalves, O., Hickok, G., & Saberi, K. (2011). Observer weighting of interaural cues in positive and negative envelope slopes of amplitude modulated waveforms. Hearing Research, 277, 143–151. doi: https://doi.org/10.1016/j.heares.2011.01.008. (PMID: 10.1016/j.heares.2011.01.008212726305217712)
Hsieh, I., Fillmore, P., Rong, F., Hickok, G., & Saberi, K. (2012). FM-selective networks in human auditory cortex revealed using fMRI and multivariate pattern classification. Journal of Cognitive Neuroscience, 24, 1896–1907. doi: https://doi.org/10.1162/jocn_a_00254. (PMID: 10.1162/jocn_a_00254226403905237586)
Joris, P. X., Schreiner, C. E., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiological Review, 84, 541–577. doi: https://doi.org/10.1152/physrev.00029.2003. (PMID: 10.1152/physrev.00029.2003)
Klump, G. M., & Langemann, U. (1992). The detection of frequency and amplitude-modulation in the European starling (Sturnus-Vulgaris) –Psychoacoustics and Neurophysiology. In Cazals, Y., Horner, K., and Demany, L. (Eds.). Book series: Advances in the biosciences (pp. 353–359, Vol. 83). Oxford: Pergamon Press Ltd.
Lakatos, P., Musacchia, G., O’Connel, M. N., Falchier, A. Y., Javitt, D. C., & Schroeder, C. E. (2013). The spectrotemporal filter mechanism of auditory selective attention. Neuron, 77, 750–761. doi: https://doi.org/10.1016/j.neuron.2012.11.034. (PMID: 10.1016/j.neuron.2012.11.034234391263583016)
Lamminmaki, S., Parkkonen, L., & Hari, R. (2014). Human neuromagnetic steady-state responses to amplitude-modulated tones, speech, and music. Ear and Hearing, 35, 461–467. doi: https://doi.org/10.1097/AUD.0000000000000033. (PMID: 10.1097/AUD.0000000000000033246035444072443)
Landau, A. N., & Fries, P. (2012). Attention samples stimuli rhythmically. Current Biology, 22, 1000–1004. doi: https://doi.org/10.1016/j.cub.2012.03.054. (PMID: 10.1016/j.cub.2012.03.05422633805)
Langner, G. (1992). Periodicity coding in the auditory system. Hearing Research, 60, 115–142. doi: https://doi.org/10.1016/0378-5955(92)90015-F. (PMID: 10.1016/0378-5955(92)90015-F1639723)
Langner, G., Dinse H. R., & Godde, B. (2009). A map of periodicity orthogonal to frequency representation in the cat auditory cortex. Frontiers in Integrative Neuroscience, 16. doi: https://doi.org/10.3389/neuro.07.027.2009.
Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54, 1001–1010. doi: https://doi.org/10.1016/j.neuron.2007.06.004. (PMID: 10.1016/j.neuron.2007.06.004175823382703451)
Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A user’s guide (2nd). New York, NY: Psychology Press. doi: https://doi.org/10.4324/9781410611147. (PMID: 10.4324/9781410611147)
Meddis, R., Hewitt, M. J., & Shackleton, T. M. (1990). Implementation details of a computation model of the inner hair-cell/auditory-nerve synapse. Journal of the Acoustical Society of America, 87, 1813–1816. doi: https://doi.org/10.1121/1.399379. (PMID: 10.1121/1.399379)
Mercier, M. R., Foxe, J. J., Fiebelkorn, I. C., Butler, J. S., Schwartz, T. H., & Molholm, S. (2013). Auditory-driven phase reset in visual cortex: Human electrocorticography reveals mechanisms of early multisensory interaction. NeuroImage, 79, 19–29. doi: https://doi.org/10.1016/j.neuroimage.2013.04.060. (PMID: 10.1016/j.neuroimage.2013.04.060236244933677511)
Morimoto, T., Irino, T., Harada, K., Nakaichi, T., Okamoto, Y., Kanno, A., … Ogawa, K. (2019). Two-point method for measuring the temporal modulation transfer function. Ear and Hearing, 40, 55–62. doi: https://doi.org/10.1097/AUD.0000000000000590. (PMID: 10.1097/AUD.000000000000059029664752)
Peelle, J. E., & Davis, M. H. (2012). Neural oscillations carry speech rhythm through to comprehension. Frontiers in Psychology, 3, 320. doi: https://doi.org/10.3389/fpsyg.2012.00320. (PMID: 10.3389/fpsyg.2012.00320229732513434440)
Peters, R. W., Moore, B. C. J., & Baer, T. (1998). Speech reception thresholds in noise with and without spectral and temporal dips for hearing-impaired and normally hearing people. Journal of the Acoustical Society of America, 103, 577–587. doi: https://doi.org/10.1121/1.421128. (PMID: 10.1121/1.4211289440343)
Re, D., Inbar, M., Richter, C. G., & Landau, A. N. (2019). Feature-based attention samples stimuli rhythmically. Current Biology, 29, 693–699. doi: https://doi.org/10.1016/j.cub.2019.01.010. (PMID: 10.1016/j.cub.2019.01.01030744973)
Romei, V., Gross, J., & Thut, G. (2012). Sounds reset rhythms of visual cortex and corresponding human visual perception. Current Biology, 22, 807–813. doi: https://doi.org/10.1016/j.cub.2012.03.025. (PMID: 10.1016/j.cub.2012.03.025225034993368263)
Saberi, K., & Hafter, E. R. (1995). A common neural code for frequency- and amplitude-modulated sounds. Nature, 374, 537–539. doi: https://doi.org/10.1038/374537a0. (PMID: 10.1038/374537a07700378)
Schlauch, R. S., & Hafter, E. R. (1991). Listening bandwidths and frequency uncertainty in pure-tone signal detection. Journal of the Acoustical Society of America, 90, 1332–1339. https://doi.org/10.1121/1.401925.
Schreiner, C. E., & Malone, B. J. (2015). Representation of loudness in the auditory cortex. Handbook of Clinical Neurology, 129, 73–84. doi: https://doi.org/10.1016/B978-0-444-62630-1.00004-4. (PMID: 10.1016/B978-0-444-62630-1.00004-425726263)
Scott, D. M., & Humes, L. E. (1990). Modulation transfer functions: a comparison of the results of three methods. Journal of Speech and Hearing Research, 33, 390–397. doi: https://doi.org/10.1044/jshr.3302.390. (PMID: 10.1044/jshr.3302.3902359280)
Sek, A., & Moore, B. C. J. (2003). Testing the concept of a modulation filter bank: The audibility of component modulation and detection of phase change in three-component modulators. Journal of the Acoustical Society of America, 113, 2801–2811. doi: https://doi.org/10.1121/1.1564020. (PMID: 10.1121/1.156402012765397)
Simon, D. M., & Wallace, M. T. (2017). Rhythmic modulation of entrained auditory oscillations by visual inputs. Brain Topography, 30, 565–578. doi: https://doi.org/10.1007/s10548-017-0560-4. (PMID: 10.1007/s10548-017-0560-428341920)
Slaney, M. (1998). Auditory toolbox: A MATLAB toolbox for auditory modeling work (Technical Report 1998-010). Palo Alto, CA: Interval Research Corporation.
Spaak, E., de Lange, F. P., & Jensen, O. (2014). Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. Journal of Neuroscience, 34, 3536–3544. doi: https://doi.org/10.1523/JNEUROSCI.4385-13.2014. (PMID: 10.1523/JNEUROSCI.4385-13.201424599454)
ten Cat, C., & Spierings, M. (2019). Rules, rhythm and grouping: Auditory pattern perception by birds. Animal Behavior, 151, 249–257. doi: https://doi.org/10.1016/j.anbehav.2018.11.010. (PMID: 10.1016/j.anbehav.2018.11.010)
Thorne, J. D., De Vos, M., Campos Viola, F., & Debener, S. (2011). Cross-modal phase reset predicts auditory task performance in humans. Journal of Neuroscience, 31, 3853–3861. doi: https://doi.org/10.1523/JNEUROSCI.6176-10.2011. (PMID: 10.1523/JNEUROSCI.6176-10.201121389240)
VanRullen, R., & Macdonald, J. S. P. (2012). Perceptual echoes at 10 Hz in the human brain. Current Biology, 22, 995–999. doi: https://doi.org/10.1016/j.cub.2012.03.050. (PMID: 10.1016/j.cub.2012.03.05022560609)
Wright, B. A., & Fitzgerald, M. B. (2017). Detection of tones of unexpected frequency in amplitude-modulated noise. Journal of the Acoustical Society of America, 142, 2043–2046. doi: https://doi.org/10.1121/1.5007718. (PMID: 10.1121/1.500771829092596)
Xiang, J. J., Peoppel, D., & Simon, J. Z. (2013). Physiological evidence for auditory modulation filterbanks: Cortical responses to concurrent modulations. Journal of the Acoustical Society of America, 133, EL7–EL12. doi: https://doi.org/10.1121/1.4769400. (PMID: 10.1121/1.476940023298020)
Grant Information:
R01 DC009659 United States DC NIDCD NIH HHS
Contributed Indexing:
Keywords: Entrainment; Periodicity; Rhythm
Entry Date(s):
Date Created: 20200721 Date Completed: 20201221 Latest Revision: 20220928
Update Code:
20240104
DOI:
10.3758/s13414-020-02095-y
PMID:
32686065
Czasopismo naukowe
Modulation patterns are known to carry critical predictive cues to signal detection in complex acoustic environments. The current study investigated the persistence of masker modulation effects on postmodulation detection of probe signals. Hickok, Farahbod, and Saberi (Psychological Science, 26, 1006-1013, 2015) demonstrated that thresholds for a tone pulse in stationary noise follow a predictable periodic pattern when preceded by a 3-Hz amplitude modulated masker. They found entrainment of detection patterns to the modulation envelope lasting for approximately two cycles after termination of modulation. The current study extends these results to a wide range of modulation rates by mapping the temporal modulation transfer function for persistent modulatory effects. We found significant entrainment to modulation rates of 2 and 3 Hz, a weaker effect at 5 Hz, and no entrainment at higher rates (8 to 32 Hz). The effect seems critically dependent on attentional mechanisms, requiring temporal and level uncertainty of the probe signal. Our findings suggest that the persistence of modulatory effects on signal detection is lowpass in nature and attention based.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies