Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Evaluation of the performance of algorithms mapping EORTC QLQ-C30 onto the EQ-5D index in a metastatic colorectal cancer cost-effectiveness model.

Tytuł :
Evaluation of the performance of algorithms mapping EORTC QLQ-C30 onto the EQ-5D index in a metastatic colorectal cancer cost-effectiveness model.
Autorzy :
Franken MD; University Medical Centre Utrecht, Utrecht University, Cancer Centre, Department of Medical Oncology, P.O. Box 85500, 3508, GA, Utrecht, the Netherlands. .
de Hond A; IT Department, Leiden University Medical Center, Leiden, the Netherlands.
Degeling K; Cancer Health Services Research Unit, Faculty of Medicine, Dentistry and Health Sciences, School of Population and Global Health, University of Melbourne, Melbourne, Australia.
Punt CJA; Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
Koopman M; University Medical Centre Utrecht, Utrecht University, Cancer Centre, Department of Medical Oncology, P.O. Box 85500, 3508, GA, Utrecht, the Netherlands.
Uyl-de Groot CA; Institute for Medical Technology Assessment/institute of Health policy and Management, Erasmus University, Rotterdam, the Netherlands.
Versteegh MM; Institute for Medical Technology Assessment/institute of Health policy and Management, Erasmus University, Rotterdam, the Netherlands.
van Oijen MGH; Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
Pokaż więcej
Źródło :
Health and quality of life outcomes [Health Qual Life Outcomes] 2020 Jul 20; Vol. 18 (1), pp. 240. Date of Electronic Publication: 2020 Jul 20.
Typ publikacji :
Evaluation Study; Journal Article
Język :
English
Imprint Name(s) :
Original Publication: [London] : BioMed Central, c2003-
MeSH Terms :
Algorithms*
Quality of Life*
Colorectal Neoplasms/*psychology
Cost-Benefit Analysis ; Female ; Humans ; Male ; Middle Aged ; Quality-Adjusted Life Years ; Surveys and Questionnaires/standards
References :
Qual Life Res. 2016 Feb;25(2):275-281. (PMID: 26231589)
Health Technol Assess. 2014 Feb;18(9):1-224. (PMID: 24524660)
Expert Rev Pharmacoecon Outcomes Res. 2019 Feb;19(1):89-96. (PMID: 30173585)
Pharmacoecon Open. 2018 Jun;2(2):165-177. (PMID: 29623623)
Ned Tijdschr Geneeskd. 2005 Jul 9;149(28):1574-8. (PMID: 16038162)
J Natl Cancer Inst. 1993 Mar 3;85(5):365-76. (PMID: 8433390)
Qual Life Res. 2011 Dec;20(10):1727-36. (PMID: 21479777)
Eur J Cancer. 2017 Apr;75:204-212. (PMID: 28237866)
Qual Life Res. 2016 Apr;25(4):891-911. (PMID: 26391884)
Med Care. 2011 May;49(5):451-60. (PMID: 21422961)
Value Health. 2013 Jan-Feb;16(1):202-10. (PMID: 23337232)
Eur J Cancer. 2006 Aug;42(12):1848-57. (PMID: 16829069)
Health Policy. 1990 Dec;16(3):199-208. (PMID: 10109801)
Qual Life Res. 2016 Mar;25(3):625-36. (PMID: 26790428)
Lancet. 2015 May 9;385(9980):1843-52. (PMID: 25862517)
Pharmacoeconomics. 2018 Feb;36(2):225-238. (PMID: 29270835)
Cancer. 2008 Aug 15;113(4):879-86. (PMID: 18521903)
J Health Econ. 1986 Mar;5(1):1-30. (PMID: 10311607)
Health Qual Life Outcomes. 2010 Nov 26;8:141. (PMID: 21110838)
JAMA. 1996 Oct 16;276(15):1253-8. (PMID: 8849754)
Support Care Cancer. 2018 Oct;26(10):3397-3404. (PMID: 29663137)
J Gastrointest Cancer. 2020 Mar;51(1):196-203. (PMID: 30977049)
J Med Econ. 2017 Feb;20(2):193-199. (PMID: 27676291)
Oncologist. 2011;16(11):1626-36. (PMID: 21987427)
Med Decis Making. 2012 Jul-Aug;32(4):554-68. (PMID: 22114301)
Eur J Cancer. 2015 Jul;51(10):1263-73. (PMID: 25953068)
Value Health. 2012 May;15(3):504-13. (PMID: 22583461)
Health Qual Life Outcomes. 2006 Sep 27;4:70. (PMID: 17005038)
Health Qual Life Outcomes. 2007 Dec 21;5:70. (PMID: 18154669)
Med Care. 1997 Nov;35(11):1095-108. (PMID: 9366889)
Cancer Epidemiol. 2018 Dec;57:60-67. (PMID: 30317148)
Contributed Indexing :
Keywords: Colorectal cancer; EQ-5D-3L; Mapping algorithm; QLQ-C30; Quality of life; Utility
Entry Date(s) :
Date Created: 20200722 Date Completed: 20201021 Latest Revision: 20201021
Update Code :
20201023
PubMed Central ID :
PMC7370458
DOI :
10.1186/s12955-020-01481-2
PMID :
32690011
Czasopismo naukowe
Background: Cost-effectiveness models require quality of life utilities calculated from generic preference-based questionnaires, such as EQ-5D. We evaluated the performance of available algorithms for QLQ-C30 conversion into EQ-5D-3L based utilities in a metastatic colorectal cancer (mCRC) patient population and subsequently developed a mCRC specific algorithm. Influence of mapping on cost-effectiveness was evaluated.
Methods: Three available algorithms were compared with observed utilities from the CAIRO3 study. Six models were developed using 5-fold cross-validation: predicting EQ-5D-3L tariffs from QLQ-C30 functional scale scores, continuous QLQ-C30 scores or dummy levels with a random effects model (RE), a most likely probability method on EQ-5D-3L functional scale scores, a beta regression model on QLQ-C30 functional scale scores and a separate equations subgroup approach on QLQ-C30 functional scale scores. Performance was assessed, and algorithms were tested on incomplete QLQ-C30 questionnaires. Influence of utility mapping on incremental cost/QALY gained (ICER) was evaluated in an existing Dutch mCRC cost-effectiveness model.
Results: The available algorithms yielded mean utilities of 1: 0.87 ± sd:0.14,2: 0.81 ± 0.15 (both Dutch tariff) and 3: 0.81 ± sd:0.19. Algorithm 1 and 3 were significantly different from the mean observed utility (0.83 ± 0.17 with Dutch tariff, 0.80 ± 0.20 with U.K. tariff). All new models yielded predicted utilities drawing close to observed utilities; differences were not statistically significant. The existing algorithms resulted in an ICER difference of €10,140 less and €1765 more compared to the observed EQ-5D-3L based ICER (€168,048). The preferred newly developed algorithm was €5094 higher than the observed EQ-5D-3L based ICER. Disparity was explained by minimal diffences in incremental QALYs between models.
Conclusion: Available mapping algorithms sufficiently accurately predict utilities. With the commonly used statistical methods, we did not succeed in developping an improved mapping algorithm. Importantly, cost-effectiveness outcomes in this study were comparable to the original model outcomes between different mapping algorithms. Therefore, mapping can be an adequate solution for cost-effectiveness studies using either a previously designed and validated algorithm or an algorithm developed in this study.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies