Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Evidence of human occupation in Mexico around the Last Glacial Maximum.

Tytuł:
Evidence of human occupation in Mexico around the Last Glacial Maximum.
Autorzy:
Ardelean CF; Unidad Académica de Antropología, Universidad Autónoma de Zacatecas, Zacatecas, Mexico. .; Department of Archaeology, University of Exeter, Exeter, UK. .
Becerra-Valdivia L; Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.; Chronos 14C-Cycle Facility, SSEAU, University of New South Wales, Sydney, New South Wales, Australia.
Pedersen MW; Lundbeck Foundation GeoGenetics Centre, University of Copenhagen, Copenhagen, Denmark.
Schwenninger JL; Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.
Oviatt CG; Department of Geology, Kansas State University, Manhattan, KS, USA.
Macías-Quintero JI; Escuela de Arqueología, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Mexico.
Arroyo-Cabrales J; Laboratorio de Arqueozoología, Subdirección de Laboratorios y Apoyo Académico, Instituto Nacional de Antropología e Historia, Mexico City, Mexico.
Sikora M; Lundbeck Foundation GeoGenetics Centre, University of Copenhagen, Copenhagen, Denmark.
Ocampo-Díaz YZE; Facultad de Ingeniería, Universidad Autónoma de San Luís Potosí, San Luis Potosí, Mexico.; Grupo de Geología Exógena y del Sedimentario, San Luis Potosí, Mexico.
Rubio-Cisneros II; Grupo de Geología Exógena y del Sedimentario, San Luis Potosí, Mexico.
Watling JG; Laboratório de Arqueologia dos Trópicos, Museu de Arqueologia e Etnologia, Universidade de São Paulo, São Paulo, Brazil.
de Medeiros VB; Laboratório de Micropaleontologia, Instituto de Geociências, Universidade de São Paulo, São Paulo, Brazil.
De Oliveira PE; Laboratório de Micropaleontologia, Instituto de Geociências, Universidade de São Paulo, São Paulo, Brazil.; Botany Department, The Field Museum of Natural History, Chicago, IL, USA.
Barba-Pingarón L; Laboratorio de Prospección Arqueológica, Instituto de Investigaciones Antropológicas (IIA), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
Ortiz-Butrón A; Laboratorio de Prospección Arqueológica, Instituto de Investigaciones Antropológicas (IIA), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
Blancas-Vázquez J; Laboratorio de Prospección Arqueológica, Instituto de Investigaciones Antropológicas (IIA), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
Rivera-González I; Laboratorio de Palinología, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico.
Solís-Rosales C; Laboratorio de Espectrometría de Masas con Aceleradores, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
Rodríguez-Ceja M; Laboratorio de Espectrometría de Masas con Aceleradores, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
Gandy DA; Department of Archaeology, University of Cambridge, Cambridge, UK.
Navarro-Gutierrez Z; Unidad Académica de Antropología, Universidad Autónoma de Zacatecas, Zacatecas, Mexico.
De La Rosa-Díaz JJ; Unidad Académica de Antropología, Universidad Autónoma de Zacatecas, Zacatecas, Mexico.
Huerta-Arellano V; Unidad Académica de Antropología, Universidad Autónoma de Zacatecas, Zacatecas, Mexico.
Marroquín-Fernández MB; Escuela de Arqueología, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Mexico.
Martínez-Riojas LM; Unidad Académica de Antropología, Universidad Autónoma de Zacatecas, Zacatecas, Mexico.
López-Jiménez A; Laboratorio de Arqueozoología, Subdirección de Laboratorios y Apoyo Académico, Instituto Nacional de Antropología e Historia, Mexico City, Mexico.
Higham T; Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.
Willerslev E; Lundbeck Foundation GeoGenetics Centre, University of Copenhagen, Copenhagen, Denmark. .; Welcome Trust, Sanger Institute, Hinxton, UK. .; The Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark. .; Department of Zoology, University of Cambridge, Cambridge, UK. .
Źródło:
Nature [Nature] 2020 Aug; Vol. 584 (7819), pp. 87-92. Date of Electronic Publication: 2020 Jul 22.
Typ publikacji:
Historical Article; Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
MeSH Terms:
Ice Cover*
Human Migration/*history
Altitude ; Archaeology ; Bayes Theorem ; Caves ; Cultural Diversity ; DNA, Ancient/analysis ; History, Ancient ; Humans ; Mexico
References:
Meltzer, D. J. The Great Paleolithic War: How Science Forged an Understanding of America’s Ice Age Past (Univ. Chicago Press, 2015).
Ardelean, C. F. et al. in People and Culture in Ice Age Americas: New Dimensions in Paleoamerican Archaeology (eds Suarez, R. & Ardelean, C. F.) 108–133 (Univ. Utah Press, 2019).
Sanchez, G. et al. Human (Clovis)–gomphothere (Cuvieronius sp.) association ~13,390 calibrated yBP in Sonora, Mexico. Proc. Natl Acad. Sci. USA 111, 10972–10977 (2014). (PMID: 25024193)
Des Lauriers, M. R., Davis, L. G., Turnbull, J., Southon, J. R. & Taylor, R. E. The earliest fish hooks from the Americas reveal fishing technology of Pleistocene maritime foragers. Am. Antiq. 82, 498–516 (2017).
Acosta, G. et al. Climate change and peopling of the Neotropics during the Pleistocene–Holocene transition. Bol. Soc. Geol. Mex. 70, 1–19 (2018).
González, S., Jiménez López, C., Hedges, R., Pompa y Padilla, J. A. & Huddart, D. Early humans in Mexico: new chronological data. In El Hombre Temprano en América y sus Implicaciones en el Poblamiento de la Cuenca de México: Primer Simposio Internacional (eds Jiménez López, C. et al.) 67–77 (Instituto Nacional de Anthrología e Historia, 2006).
González, A. et al. in Paleoamerican Odyssey (eds Graf, K. E. et al.) 323–337 (Center for the Study of the First Americans, 2014).
Chatters, J. C. et al. Late Pleistocene human skeleton and mtDNA link Paleoamericans and modern Native Americans. Science 344, 750–754 (2014). (PMID: 24833392)
Stinnesbeck, W. et al. The earliest settlers of Mesoamerica date back to the late Pleistocene. PLoS ONE 12, e0183345 (2017). (PMID: 288541945576649)
Williams, T. J. et al. Evidence of an early projectile point technology in North America at the Gault Site, Texas, USA. Sci. Adv. 4, eaar5954 (2018). (PMID: 300092576040843)
Waters, M. R. et al. Pre-Clovis projectile points at the Debra L. Friedkin site, Texas–implications for the Late Pleistocene peopling of the Americas. Sci. Adv. 4, eaat4505 (2018). (PMID: 303976436200361)
Jenkins, D. L. et al. Clovis age Western Stemmed projectile points and human coprolites at the Paisley Caves. Science 337, 223–228 (2012). (PMID: 22798611)
Adovasio, J. M., Gunn, J. D., Donahue, J. & Stuckenrath, R. Meadowcroft Rockshelter, 1977: an overview. Am. Antiq. 43, 632–651 (1978).
Halligan, J. J. et al. Pre-Clovis occupation 14,550 years ago at the Page–Ladson site, Florida, and the peopling of the Americas. Sci. Adv. 2, e1600375 (2016). (PMID: 273865534928949)
Dillehay, T. D. Monte Verde, a Late Pleistocene Settlement in Chile: The Archaeological Context and Interpretation (Smithsonian Institution Press, 1997).
Bourgeon, L., Burke, A. & Higham, T. Earliest human presence in North America dated to the Last Glacial Maximum: new radiocarbon dates from Bluefish Caves, Canada. PLoS ONE 12, e0169486 (2017). (PMID: 280609315218561)
Davis, L. G. et al. Late Upper Paleolithic occupation at Cooper’s Ferry, Idaho, USA, ~16,000 years ago. Science 365, 891–897 (2019). (PMID: 31467216)
Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).
Ardelean, C. F. Archaeology of Early Human Occupations and the Pleistocene–Holocene Transition in the Zacatecas Desert, Northern Mexico. PhD thesis, Univ. Exeter (2013).
Brock, F., Higham, T., Ditchfield, P. & Bronk Ramsey, C. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52, 103–112 (2010).
Wang, Y., Amundson, R. & Trumbore, S. Radiocarbon dating of soil organic matter. Quat. Res. 45, 282–288 (1996).
Pessenda, L. C. R., Gouveia, S. E. M. & Aravena, R. Radiocarbon dating of total soil organic matter and humin fraction and its comparison with C ages of fossil charcoal. Radiocarbon 43, 595–601 (2001).
Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).
Dunham, R. J. Classification of carbonate rocks according to depositional texture. In Classification of Carbonate Rocks—A Symposium (ed. Ham, W. E.) 108–121 (The American Association of Petroleum Geologists, 1962).
Folk, R. L. Practical petrographic classification of limestones. Bull. Am. Assoc. Petrol. Geol. 43, 1–38 (1959).
Smallwood, A. M. & Jennings, T. A. Clovis: On the Edge of a New Understanding (Texas A&M Univ. Press, 2014).
Goebel, T. & Keene, J. L. in Archaeology in the Great Basin and Southwest: Papers in Honor of Don D. Fowler (eds Parezo, N. J. & Janetski, J. C.) 35–60 (Univ. Utah Press, 2014).
Graf, K. E. & Buvit, I. Human dispersal from Siberia to Beringia: assessing a Beringian standstill in light of the archaeological evidence. Curr. Anthropol. 58, S583–S603 (2017).
Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003). (PMID: 12702808)
Pedersen, M. W. et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature 537, 45–49 (2016). (PMID: 27509852)
Villaseñor, J. L. Checklist of the native vascular plants of Mexico. Rev. Mex. Biodivers. 87, 559–902 (2016).
Henderson, A., Bernal, R. & Galeano-Garces, G. Field Guide to the Palms of the Americas (Princeton Univ. Press, 1997).
Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017). (PMID: 28450384)
Middleton, W. D. et al. The study of archaeological floors: methodological proposal for the analysis of anthropogenic residues by spot tests, ICP-OES, and GC-MS. J. Archaeol. Method Theory 17, 183–208 (2010).
Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. 111, D06102 (2006).
Sedlock, R. L., Ortega-Gutiérrez, F. & Speed, R. C. Tectonostratigraphic Terranes and Tectonic Evolution of Mexico (GSA Special Papers Volume 278) (Geological Society of America, 1993).
Padilla y Sánchez, R. J. Geological Map of the Curvature of Monterrey, Mexico (GSA, 2006).
Ramsey, C. B., Higham, T. & Leach, P. Towards high-precision AMS: progress and limitations. Radiocarbon 46, 17–24 (2004). (PMID: 10.1017/S0033822200039308)
Hajdas, I. Radiocarbon dating and its applications in Quaternary studies. E&G Quat. Sci.J. 57, 2–24 (2008).
Abbott, M. B. & Stafford, T. W. Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quat. Res. 45, 300–311 (1996).
Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971). (PMID: 4926713)
Solís, C. et al. A new AMS facility in Mexico. Nucl. Instrum. Methods Phys. Res. B 331, 233–237 (2014).
International Chemical Analysis. International Chemical Analysis.  https://www.radiocdating.com/ (accessed 18 July 2018) (2017).
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).
Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045 (2009).
Aitken, M. J. Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-stimulated Luminescence (Clarendon, 1998).
Mirazón Lahr, M. et al. Inter-group violence among early Holocene hunter-gatherers of West Turkana, Kenya. Nature 529, 394–398 (2016). (PMID: 26791728)
Bøtter-Jensen, L., Bulur, E., Duller, G. A. T. & Murray, A. S. Advances in luminescence instrument systems. Radiat. Meas. 32, 523–528 (2000). (PMID: 10.1016/S1350-4487(00)00039-1)
Richter, D., Richter, A. & Dornich, K. Lexsyg smart—a luminescence detection system for dosimetry, material research and dating application. Geochronometria 42, 202–209 (2015).
Murray, A. S. & Wintle, A. G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 32, 57–73 (2000).
Wintle, A. G. & Murray, A. S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiat. Meas. 41, 369–391 (2006).
Banerjee, D., Murray, A. S., Bøtter-Jensen, L. & Lang, A. Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiat. Meas. 33, 73–94 (2001).
Wallinga, J., Murray, A. S. & Bøtter-Jensen, L. Measurement of the dose in quartz in the presence of feldspar contamination. Radiat. Prot. Dosimetry 101, 367–370 (2002). (PMID: 12382769)
Durcan, J. A., King, G. E. & Duller, G. A. T. DRAC: dose rate and age calculator for trapped charge dating. Quat. Geochronol. 28, 54–61 (2015).
Barba, L. Chemical residues in lime-plastered archaeological floors. Geoarchaeology 22, 439–452 (2007). (PMID: 10.1002/gea.20160)
Piperno, D. R. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists (Rowman Altamira, 2006).
Piperno, D. R. & Pearsall, D. M. The Silica Bodies of Tropical American Grasses: Morphology, Taxonomy, and Implications for Grass Systematics and Fossil Phytolith Identification (Smithsonian Institution, 1998).
Gallego, L. & Distel, R. A. Phytolith assemblages in grasses native to central Argentina. Ann. Bot. 94, 865–874 (2004). (PMID: 155140274242281)
Fredlund, G. G. & Tieszen, L. T. Modern phytolith assemblages from the North American Great Plains. J. Biogeogr. 21, 321–335 (1994).
Colinvaux, P., De Olieira, P. E. & Moreno Patino, J. E. Amazon Pollen Manual and Atlas (Harwood Academic, 1999).
Roubik, D. W. & Moreno Patiño, J. E. Pollen and Spores of Barro Colorado Island (Missouri Botanical Garden, 1991).
Markgraf, V. & d’Antoni, H. L. Pollen Flora of Argentina (Univ. Arizona Press, 1978).
Johnston, I. M. Plants of Coahuila, eastern Chihuahua, and adjoining Zacatecas and Durango, V. J. Arnold Arbor. 25, 133–182 (1944).
González-Tagle, M. A., Schwendenmann, L., Pérez, J. J. & Schulz, R. Forest structure and woody plant species composition along a fire chronosequence in mixed pine–oak forest in the Sierra Madre Oriental, Northeast Mexico. For. Ecol. Manage. 256, 161–167 (2008).
Ludlow Wiechers, B., Almeida Leñero, L. & Sugiura, Y. Palinomorfos del Holoceno en la cuenca alta del Río Lerma, Estado de México, México. Bol. Sociedad Botánica de México 72, 59–105 (2003).
Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, db.prot5448 (2010).
Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013). (PMID: 236134873694634)
Grant Information:
United Kingdom WT_ Wellcome Trust
Substance Nomenclature:
0 (DNA, Ancient)
Entry Date(s):
Date Created: 20200724 Date Completed: 20200908 Latest Revision: 20210521
Update Code:
20240104
DOI:
10.1038/s41586-020-2509-0
PMID:
32699412
Czasopismo naukowe
The initial colonization of the Americas remains a highly debated topic 1 , and the exact timing of the first arrivals is unknown. The earliest archaeological record of Mexico-which holds a key geographical position in the Americas-is poorly known and understudied. Historically, the region has remained on the periphery of research focused on the first American populations 2 . However, recent investigations provide reliable evidence of a human presence in the northwest region of Mexico 3,4 , the Chiapas Highlands 5 , Central Mexico 6 and the Caribbean coast 7-9 during the Late Pleistocene and Early Holocene epochs. Here we present results of recent excavations at Chiquihuite Cave-a high-altitude site in central-northern Mexico-that corroborate previous findings in the Americas 10-17 of cultural evidence that dates to the Last Glacial Maximum (26,500-19,000 years ago) 18 , and which push back dates for human dispersal to the region possibly as early as 33,000-31,000 years ago. The site yielded about 1,900 stone artefacts within a 3-m-deep stratified sequence, revealing a previously unknown lithic industry that underwent only minor changes over millennia. More than 50 radiocarbon and luminescence dates provide chronological control, and genetic, palaeoenvironmental and chemical data document the changing environments in which the occupants lived. Our results provide new evidence for the antiquity of humans in the Americas, illustrate the cultural diversity of the earliest dispersal groups (which predate those of the Clovis culture) and open new directions of research.
Comment in: Nature. 2020 Aug;584(7819):47-48. (PMID: 32699366)
Comment in: Nature. 2020 Jul;583(7818):670-671. (PMID: 32699369)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies