Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Upregulation of histone H3K9 methylation in fetal endothelial cells from preeclamptic pregnancies.

Tytuł:
Upregulation of histone H3K9 methylation in fetal endothelial cells from preeclamptic pregnancies.
Autorzy:
Sheng W; Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.; Department of Obstetrics and Gynecology, First Affiliated Hospital, Harbin Medical University, Harbin, China.
Gu Y; Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
Chu X; Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.; Department of Obstetrics and Gynecology, Second Affiliated Hospital, Harbin Medical University, Harbin, China.
Morgan JA; Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
Cooper DB; Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
Lewis DF; Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
McCathran CE; Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
Wang Y; Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
Źródło:
Journal of cellular physiology [J Cell Physiol] 2021 Mar; Vol. 236 (3), pp. 1866-1874. Date of Electronic Publication: 2020 Jul 23.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: New York, NY : Wiley-Liss
Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
MeSH Terms:
Up-Regulation*
Endothelial Cells/*metabolism
Endothelial Cells/*pathology
Fetus/*pathology
Histones/*metabolism
Lysine/*metabolism
Pre-Eclampsia/*metabolism
Adult ; Cell Hypoxia ; Down-Regulation ; Female ; Histocompatibility Antigens/metabolism ; Histone-Lysine N-Methyltransferase/metabolism ; Human Umbilical Vein Endothelial Cells/metabolism ; Humans ; Methylation ; Nitric Oxide Synthase Type III/metabolism ; Oxidative Stress ; Placenta/metabolism ; Pregnancy ; Superoxide Dismutase/metabolism
References:
Aouache, R., Biquard, L., Vaiman, D., & Miralles, F. (2018). Oxidative stress in preeclampsia and placental diseases. International Journal of Molecular Sciences, 19(5), 1496. https://doi.org/10.3390/ijms19051496.
Awamleh, Z., Gloor, G. B., & Han, V. K. M. (2019). Placental microRNAs in pregnancies with early onset intrauterine growth restriction and preeclampsia: Potential impact on gene expression and pathophysiology. BMC Medical Genomics, 12(1), 91. https://doi.org/10.1186/s12920-019-0548-x.
Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., … Zhao, K. (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129(4), 823-837. https://doi.org/10.1016/j.cell.2007.05.009.
Batie, M., Frost, J., Frost, M., Wilson, J. W., Schofield, P., & Rocha, S. (2019). Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science, 363(6432), 1222-1226. https://doi.org/10.1126/science.aau5870.
Batie, M., Del Peso, L., & Rocha, S. (2018). Hypoxia and chromatin: A focus on transcriptional repression mechanisms. Biomedicines, 6, 47. https://doi.org/10.3390/biomedicines6020047.
Bounds, K. R., Chiasson, V. L., Pan, L. J., Gupta, S., & Chatterjee, P. (2017). MicroRNAs: New players in the pathobiology of preeclampsia. Frontiers in Cardiovascular Medicine, 4, 60. https://doi.org/10.3389/fcvm.2017.00060.
Brodowski, L., Burlakov, J., Hass, S., von Kaisenberg, C., & von Versen-Höynck, F. (2017). Impaired functional capacity of fetal endothelial cells in preeclampsia. PLoS One, 12(5), e0178340. https://doi.org/10.1371/journal.pone.0178340.
Casciello, F., Al-Ejeh, F., Kelly, G., Brennan, D. J., Ngiow, S. F., Young, A., … Lee, J. S. (2017). G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 114(27), 7077-7082. https://doi.org/10.1073/pnas.1618706114.
Cengiz, M., Yavuzer, S., Kılıçkıran Avcı, B., Yürüyen, M., Yavuzer, H., Dikici, S. A., … Öngen, Z. (2015). Circulating miR-21 and eNOS in subclinical atherosclerosis in patients With hypertension. Clinical and Experimental Hypertension, 37(8), 643-649. https://doi.org/10.3109/10641963.2015.1036064.
Christians, J. K., Leavey, K., & Cox, B. J. (2017). Associations between imprinted gene expression in the placenta, human fetal growth and preeclampsia. Biology Letters, 13(11), 20170643. https://doi.org/10.1098/rsbl.2017.0643.
Depoix, C. L., Haegeman, F., Debiève, F., & Hubinont, C. (2018). Is 8% O2 more normoxic than 21% O2 for long-term in vitro cultures of human primary term cytotrophoblasts? Molecular Human Reproduction, 24(4), 211-220. https://doi.org/10.1093/molehr/gax069.
Dong, M., He, J., Wang, Z., Xie, X., & Wang, H. (2005). Placental imbalance of Th1- and Th2-type cytokines in preeclampsia. Acta Obstetricia et Gynecologica Scandinavica, 84(8), 788-793. https://doi.org/10.1111/j.0001-6349.2005.00714.x.
Doridot, L., Châtre, L., Ducat, A., Vilotte, J. L., Lombès, A., Méhats, C., … Vaiman, D. (2014). Nitroso-redox balance and mitochondrial homeostasis are regulated by STOX1, a pre-eclampsia-associated gene. Antioxidants & Redox Signaling, 21(6), 819-834. https://doi.org/10.1089/ars.2013.5661.
Eddy, A. C., Chapman, H., & George, E. M. (2018). Acute hypoxia and chronic ischemiainduce differential total changes in placental epigenetic modifications. Reproductive Sciences, 26(6), 766-773. https://doi.org/10.1177/1933719118799193.
Goswami, D., Tannetta, D. S., Magee, L. A., Fuchisawa, A., Redman, C. W., Sargent, I. L., & von Dadelszen, P. (2006). Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta, 27(1), 56-61. https://doi.org/10.1016/j.placenta.2004.11.007.
Gu, Y., Lewis, D. F., Zhang, Y., Groome, L. J., & Wang, Y. (2006). Increased superoxide generation and decreased stress protein Hsp90 expression in human umbilical cord vein endothelial cells (HUVECs) from pregnancies complicated by preeclampsia. Hypertension in Pregnancy, 25(3), 169-182. https://doi.org/10.1080/10641950600912950.
Hahn, M. A., Wu, X., Li, A. X., Hahn, T., & Pfeifer, G. P. (2011). Relationship between gene body DNA methylation and intragenic H3K9me3 and H3K36me3 chromatin marks. PLoS One, 6(4), e18844. https://doi.org/10.1371/journal.pone.0018844.
Ho, J. C., Abdullah, L. N., Pang, Q. Y., Jha, S., Chow, E. K., Yang, H., … Lee, K. L. (2017). Inhibition of the H3K9 methyltransferase G9A attenuates oncogenicity and activates the hypoxia signaling pathway. PLoS One, 12(11), e0188051. https://doi.org/10.1371/journal.pone.0188051.
Imai, K., Togami, H., & Okamoto, T. (2010). Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. Journal of Biological Chemistry, 285(22), 16538-16545. https://doi.org/10.1074/jbc.M110.103531.
Jaffe, E. A., Nachman, R. L., Becker, C. G., & Minick, C. R. (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. Journal of Clinical Investigation, 52(11), 2745-2756. https://doi.org/10.1172/JCI107470.
Jia, X., Xu, J., Gu, Y., Gu, X., Li, W., & Wang, Y. (2017). Vitamin D suppresses oxidative stress-induced microparticle release by human umbilical vein endothelial cells. Biology of Reproduction, 96(1), 199-210. https://doi.org/10.1095/biolreprod.116.142604.
Morton, J. S., Levasseur, J., Ganguly, E., Quon, A., Kirschenman, R., Dyck, J. R. B., … Davidge, S. T. (2019). Characterisation of the selective reduced uteroplacental perfusion (sRUPP) model of preeclampsia. Scientific Reports, 9(1), 9565. https://doi.org/10.1038/s41598-019-45959-6.
Paauw, N. D., Luijken, K., Franx, A., Verhaar, M. C., & Lely, A. T. (2016). Long-term renal and cardiovascular risk after preeclampsia: Towards screening and prevention. Clinical Science, 130(4), 239-246. https://doi.org/10.1042/CS20150567.
Paauw, N. D., van Rijn, B. B., Lely, A. T., & Joles, J. A. (2017). Pregnancy as a critical window for blood pressure regulation in mother and child: Programming and reprogramming. Acta Physiologica, 219(1), 241-259. https://doi.org/10.1111/apha.12702.
Park, Y., Lee, H. J., Jung, Y. J., Kwon, H. Y., Kim, H., Lee, J., … Kwon, J. Y. (2019). CD133+/C-kit+Lin(-) endothelial progenitor cells in fetal circulation demonstrate impaired differentiation potency in severe preeclampsia. Pregnancy Hypertension, 15, 146-153. https://doi.org/10.1016/j.preghy.2018.12.005.
Redman, C. W., Sacks, G. P., & Sargent, I. L. (1999). Preeclampsia: An excessive maternal inflammatory response to pregnancy. American Journal of Obstetrics and Gynecology, 180(2 Pt 1), 499-506. https://doi.org/10.1016/s0002-9378(99)70239-5.
Roberts, J. M., & Hubei, C. A. (2009). The two stage model of preeclampsia: Variations on the theme. Placenta, 30, S32-S37. https://doi.org/10.1016/j.placenta.2008.11.009.
Rodríguez-Rodríguez, P., Ramiro-Cortijo, D., Reyes-Hernández, C. G., López de Pablo, A. L., González, M. C., & Arribas, S. M. (2018). Implication of oxidative stress in fetal programming of cardiovascular disease. Frontiers in Physiology, 9, 602. https://doi.org/10.3389/fphys.2018.00602.
Shankar, S. R., Bahirvani, A. G., Rao, V. K., Bharathy, N., Ow, J. R., & Taneja, R. (2013). G9a, a multipotent regulator of gene expression. Epigenetics, 8(1), 16-22. https://doi.org/10.4161/epi.23331.
Sharp, A. N., Heazell, A. E., Baczyk, D., Dunk, C. E., Lacey, H. A., Jones, C. J., … Crocker, I. P. (2014). Preeclampsia is associated with alterations in the p53-pathway in villous trophoblast. PLoS One, 9(1), e87621. https://doi.org/10.1371/journal.pone.0087621.
Sánchez-Aranguren, L. C., Prada, C. E., Riaño-Medina, C. E., & Lopez, M. (2014). Endothelial dysfunction and preeclampsia: Role of oxidative stress. Frontiers in Physiology, 5, 372. https://doi.org/10.3389/fphys.2014.00372.
Thompson, L. P., & Al-Hasan, Y. (2012). Impact of oxidative stress in fetal programming. Journal of Pregnancy, 2012, 582748. https://doi.org/10.1155/2012/582748.
Uwabo, J., Soma, M., Nakayama, T., & Kanmatsuse, K. (1998). Association of a variable number of tandem repeats in the endothelial constitutive nitric oxide synthase gene with essential hypertension in Japanese. American Journal of Hypertension, 11(1 Pt 1), 125-128. https://doi.org/10.1016/s0895-7061(97)00419-6.
Vicente, D., Montó, F., Oliver, E., Buendía, F., Rueda, J., Agüero, J., … D'Ocon, P. (2013). Myocardial and lymphocytic expression of eNOS and nNOS before and after heart transplantation: Relationship to clinical status. Life Sciences, 93(2-3), 108-115. https://doi.org/10.1016/j.lfs.2013.05.025.
Wang, Y., Adair, C. D., Coe, L., Weeks, J. W., Lewis, D. F., & Alexander, J. S. (1998). Activation of endothelial cells in preeclampsia: Increased neutrophil-endothelial adhesion correlates with up-regulation of adhesion molecule P-selectin in human umbilical vein endothelial cells isolated from preeclampsia. Journal of the Society for Gynecologic Investigation, 5(5), 237-243. https://doi.org/10.1016/s1071-5576(98)00023-9.
Wang, Y., Gu, Y., Alexander, J. S., & Lewis, D. F. (2019). Histone deacetylase inhibition disturbs the balance between ACE and chymase expression in endothelial cells: A potential mechanism of chymase activation in preeclampsia. Hypertension Research, 42(2), 155-164. https://doi.org/10.1038/s41440-018-0150-1.
Wang, Y., Gu, Y., Granger, D. N., Roberts, J. M., & Alexander, J. S. (2002). Endothelial junctional protein redistribution and increased monolayer permeability in HUVECs isolated during preeclampsia. American Journal of Obstetrics and Gynecology, 186(2), 214-220. https://doi.org/10.1067/mob.2002.119638.
Wang, Y., Gu, Y., Zhang, Y., & Lewis, D. F. (2004). Evidence of endothelial dysfunction in preeclampsia: Decreased endothelial nitric oxide synthase expression is associated with increased cell permeability in endothelial cells from preeclampsia. American Journal of Obstetrics and Gynecology, 190(3), 817-824. https://doi.org/10.1016/j.ajog.2003.09.049.
Wang, Y., & Walsh, S. W. (1996). Antioxidant activities and mRNA expression of superoxide dismutase, catalase, and glutathione peroxidase in normal and preeclamptic placentas. Journal of the Society for Gynecologic Investigation, 3(4), 179-184.
Wang, Y., & Walsh, S. W. (2001). Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in preeclampsia. Placenta, 22(2-3), 206-212. https://doi.org/10.1053/plac.2000.0608.
Weng, X., Zhang, Y., Li, Z., Yu, L., Xu, F., Fang, M., … Xu, Y. (2019). Class II transactivator (CIITA) mediates IFN-γ induced eNOS repression by enlisting SUV39H1. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1862(2), 163-172. https://doi.org/10.1016/j.bbagrm.2019.01.005.
Wojtala, M., Macierzyńska-Piotrowska, E., Rybaczek, D., Pirola, L., & Balcerczyk, A. (2018). Pharmacological and transcriptional inhibition of the G9a histone methyltransferase suppresses proliferation and modulates redox homeostasis in human mcrovascular endothelial cells. Pharmacological Research, 128, 252-263. https://doi.org/10.1016/j.phrs.2017.10.014.
Xu, J., Jia, X., Gu, Y., Lewis, D. F., Gu, X., & Wang, Y. (2017). Vitamin D reduces oxidative stress-induced procaspase-3/ROCK1 activation and MP release by placental trophoblasts. The Journal of Clinical Endocrinology and Metabolism, 102(6), 2100-2110. https://doi.org/10.1210/jc.2016-3753.
Yeung, K. R., Chiu, C. L., Pidsley, R., Makris, A., Hennessy, A., & Lind, J. M. (2016). DNA methylation profiles in preeclampsia and healthy control placentas. American Journal of Physiology-Heart and Circulatory Physiology, 310(10), H1295-H1303. https://doi.org/10.1152/ajpheart.00958.2015.
Zhang, Y., Gu, Y., Lewis, D. F., & Wang, Y. (2006). Reduced cellular glutathione reductase activity and increased adhesion molecule expression in endothelial cells cultured with maternal plasma from women with preeclampsia. Journal of the Society for Gynecologic Investigation, 13(6), 412-417. https://doi.org/10.1016/j.jsgi.2006.05.009.
Zhou, C., Zou, Q. Y., Jiang, Y. Z., & Zheng, J. (2020). Role of oxygen in fetoplacental endothelial responses: Hypoxia, physiological normoxia, or hyperoxia? The American Journal of Physiology-Cell Physiology, 318(5), C943-C953. https://doi.org/10.1152/ajpcell.00528.2019.
Zhou, C., Zou, Q. Y., Li, H., Wang, R. F., Liu, A. X., Magness, R. R., & Zheng, J. (2017). Preeclampsia downregulates microRNAs in fetal endothelial cells: Roles of miR-29a/c-3p in endothelial function. The Journal of Clinical Endocrinology and Metabolism, 102(9), 3470-3479. https://doi.org/10.1210/jc.2017-00849.
Zusterzeel, P. L., Rütten, H., Roelofs, H. M., Peters, W. H., & Steegers, E. A. (2001). Protein carbonyls in decidua and placenta of pre-eclamptic women as markers for oxidative stress. Placenta, 22(2-3), 213-219. https://doi.org/10.1053/plac.2000.0606.
Contributed Indexing:
Keywords: CuZn-SOD; H3K9 methylation; endothelial cells; fetal programming; oxidative stress; preeclampsia
Substance Nomenclature:
0 (Histocompatibility Antigens)
0 (Histones)
EC 1.14.13.39 (Nitric Oxide Synthase Type III)
EC 1.15.1.1 (Superoxide Dismutase)
EC 2.1.1.43 (EHMT2 protein, human)
EC 2.1.1.43 (Histone-Lysine N-Methyltransferase)
K3Z4F929H6 (Lysine)
Entry Date(s):
Date Created: 20200724 Date Completed: 20210914 Latest Revision: 20210914
Update Code:
20240104
DOI:
10.1002/jcp.29970
PMID:
32700783
Czasopismo naukowe
Adverse intrauterine environment has been considered a predisposing factor for fetal programming in preeclampsia. Using human umbilical vein endothelial cells (HUVECs), we specifically explored if aberrant histone methylation occurs in fetal endothelial cells in preeclampsia. Strikingly, we found that increased di-, and tri-methylation of histone H3 lysine 9 (H3K9me2 and H3K9me3) expression were associated with upregulation of methyltransferase G9a and downregulation of endothelial nitric oxide synthase and CuZn-SOD expression in preeclamptic HUVECs. We further demonstrated that hypoxia-induced hypermethylation of H3K9 and reduced CuZn-SOD expression mimicked what were seen in preeclamptic HUVECs and inhibition of G9a could attenuate these hypoxia-induced adverse events. Our study was the first to identify hypermethylation status in fetal endothelial cells in preeclampsia, which provides plausible evidence that increased oxidative stress in the intrauterine environment is likely a mechanism to induce aberrant histone modification in fetal endothelial cells which may have a significant impact on fetal programming in preeclampsia.
(© 2020 Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies