Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A Microdose Cocktail to Evaluate Drug Interactions in Patients with Renal Impairment.

Tytuł:
A Microdose Cocktail to Evaluate Drug Interactions in Patients with Renal Impairment.
Autorzy:
Tatosian DA; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Yee KL; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Zhang Z; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Mostoller K; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Paul E; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Sutradhar S; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Larson P; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Chhibber A; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Wen J; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Wang YJ; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Lassman M; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Latham AH; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Pang J; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Crumley T; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Gillespie A; Data Management and Biometrics, Celerion, Lincoln, Nebraska, USA.
Marricco NC; Data Management and Biometrics, Celerion, Lincoln, Nebraska, USA.
Marenco T; Data Management and Biometrics, Celerion, Lincoln, Nebraska, USA.
Murphy M; Data Management and Biometrics, Celerion, Lincoln, Nebraska, USA.
Lasseter KC; Clinical Pharmacology of Miami, Inc, Miami, Florida, USA.
Marbury TC; Orlando Clinical Research Center, Orlando, Florida, USA.
Tweedie D; Merck & Co., Inc., Kenilworth, New Jersey, USA.; Currently Independent Consultant, Harleysville, Pennsylvania, USA.
Chu X; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Evers R; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Stoch SA; Merck & Co., Inc., Kenilworth, New Jersey, USA.
Źródło:
Clinical pharmacology and therapeutics [Clin Pharmacol Ther] 2021 Feb; Vol. 109 (2), pp. 403-415. Date of Electronic Publication: 2020 Oct 26.
Typ publikacji:
Clinical Trial, Phase II; Journal Article; Randomized Controlled Trial; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2015- : Hoboken, NJ : Wiley
Original Publication: St. Louis : C.V. Mosby
MeSH Terms:
Drug Interactions/*physiology
Kidney Diseases/*metabolism
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism ; ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism ; Area Under Curve ; Biomarkers/metabolism ; Healthy Volunteers ; Humans ; Liver-Specific Organic Anion Transporter 1/metabolism ; Midazolam/pharmacokinetics ; Rifampin/pharmacokinetics
References:
Vanholder, R., Pletinck, A., Schepers, E. & Glorieux, G. Biochemical and clinical impact of organic uremic retention solutes: a comprehensive update. Toxins (Basel) 10, 33 (2018).
Tan, M.L. et al. Effect of chronic kidney disease on nonrenal elimination pathways: a systematic assessment of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and OATP. Clin. Pharmacol. Ther. 103, 854-867 (2018).
Yeung, C.K., Shen, D.D., Thummel, K.E. & Himmelfarb, J. Effects of chronic kidney disease and uremia on hepatic drug metabolism and transport. Kidney Int. 85, 522-528 (2014).
Yoshida, K. et al. Systematic and quantitative assessment of the effect of chronic kidney disease on CYP2D6 and CYP3A4/5. Clin. Pharmacol. Ther. 100, 75-87 (2016).
Chin, P.K., Wright, D.F., Patterson, D.M., Doogue, M.P. & Begg, E.J. A proposal for dose-adjustment of dabigatran etexilate in atrial fibrillation guided by thrombin time. Br. J. Clin. Pharmacol. 78, 599-609 (2014).
Boehringer Ingelheim Pharmaceuticals, Inc., Pradaxa (dabigatran etexilate mesylate) [package insert]. US Food and Drug Administration <https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/022512s038lbl.pdf>. Revised November 2019. Accessed March 13, 2020.
Morgan, R.E., Campbell, S.E., Yu, C.Y., Sponseller, C.A. & Muster, H.A. Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J. Cardiovascular Pharmacol. 60, 42-48 (2012).
Thomson, B.K. et al. Effect of CKD and dialysis modality on exposure to drugs cleared by nonrenal mechanisms. Am. J. Kidney Dis. 65, 574-582 (2015).
Miners, J.O., Yang, X., Knights, K.M. & Zhang, L. The role of the kidney in drug elimination: Transport, metabolism, and the impact of kidney disease on drug clearance. Clin. Pharmacol. Ther. 102, 436-449 (2017).
Fujita, K. et al. Direct inhibition and down-regulation by uremic plasma components of hepatic uptake transporter for SN-38, an active metabolite of irinotecan, in humans. Pharm. Res. 31, 204-215 (2014).
Hsueh, C.H. et al. Identification and quantitative assessment of uremic solutes as inhibitors of renal organic anion transporters, OAT1 and OAT3. Mol. Pharm. 13, 3130-3140 (2016).
Katsube, Y. et al. Cooperative inhibitory effects of uremic toxins and other serum components on OATP1B1-mediated transport of SN-38. Cancer Chemotherapy Pharmacol. 79, 783-789 (2017).
Reyes, M. & Benet, L.Z. Effects of uremic toxins on transport and metabolism of different biopharmaceutics drug disposition classification system xenobiotics. J. Pharmaceutical Sci. 100, 3831-3842 (2011).
Weigand, K.M. et al. Uremic solutes modulate hepatic bile acid handling and induce mitochondrial toxicity. Toxicol. In Vitro 56, 52-61 (2019).
Vanholder, R. et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 63, 1934-1943 (2003).
Naud, J. et al. Down-regulation of intestinal drug transporters in chronic renal failure in rats. J. Pharmacol. Exp. Ther. 320, 978-985 (2007).
Prueksaritanont, T. et al. Validation of a microdose probe drug cocktail for clinical drug interaction assessments for drug transporters and CYP3A. Clin. Pharmacol. Ther. 101, 519-530 (2017).
Chu, X. et al. Clinical probes and endogenous biomarkers as substrates for transporter drug-drug interaction evaluation: perspectives from the international transporter consortium. Clin. Pharmacol. Ther. 104, 836-864 (2018).
Chu, X., Chan, G.H. & Evers, R. Identification of endogenous biomarkers to predict the propensity of drug candidates to cause hepatic or renal transporter-mediated drug-drug interactions. J. Pharm. Sci. 106, 2357-2367 (2017).
Lai, Y. et al. Coproporphyrins in plasma and urine can be appropriate clinical biomarkers to recapitulate drug-drug interactions mediated by organic anion transporting polypeptide inhibition. J. Pharmacol. Exp. Ther. 358, 397-404 (2016).
Rodrigues, A.D., Taskar, K.S., Kusuhara, H. & Sugiyama, Y. Endogenous probes for drug transporters: balancing vision with reality. Clin. Pharmacol. Ther. 103, 434-448 (2018).
Liesenfeld, K.H. et al. Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with non-valvular atrial fibrillation from the RE-LY trial. J. Thrombosis Haemostasis 9, 2168-2175 (2011).
Pasanen, M.K., Fredrikson, H., Neuvonen, P.J. & Niemi, M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 82, 726-733 (2007).
Yee, S.W. et al. Organic anion transporter polypeptide 1B1 polymorphism modulates the extent of drug-drug interaction and associated biomarker levels in healthy volunteers. Clin. Transl. Sci. 12, 388-399 (2019).
Johnson, A.D. et al. Genome-wide association meta-analysis for total serum bilirubin levels. Hum. Mol. Genet. 18, 2700-2710 (2009).
Mori, D. et al. Effect of OATP1B1 genotypes on plasma concentrations of endogenous OATP1B1 substrates and drugs, and their association in healthy volunteers. Drug Metab. Pharmacokinet. 34, 78-86 (2019).
Keskitalo, J.E., Zolk, O., Fromm, M.F., Kurkinen, K.J., Neuvonen, P.J. & Niemi, M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 86, 197-203 (2009).
Yamazaki, S., Costales, C., Lazzaro, S., Eatemadpour, S., Kimoto, E. & Varma, M.V. Physiologically-based pharmacokinetic modeling approach to predict rifampin-mediated intestinal P-glycoprotein induction. CPT: Pharmacometrics Syst. Pharmacol. 8, 634-642 (2019).
Watanabe, T. et al. Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans. Drug Metabol. Dispos. 38, 215 (2010).
Elsby, R., Hilgendorf, C. & Fenner, K. Understanding the critical disposition pathways of statins to assess drug-drug interaction risk during drug development: it's not just about OATP1B1. Clin. Pharmacol. Ther. 92, 584-598 (2012).
Bergman, A. et al. Effect of hepatic organic anion-transporting polypeptide 1B inhibition and chronic kidney disease on the pharmacokinetics of a liver-targeted glucokinase activator: a model-based evaluation. Clin. Pharmacol. Ther. 106, 792-802 (2019).
Tan, M.L. et al. Use of physiologically based pharmacokinetic modeling to evaluate the effect of chronic kidney disease on the disposition of hepatic CYP2C8 and OATP1B drug substrates. Clin. Pharmacol. Ther. 105, 719-729 (2019).
Tzeng, T.B. et al. Population pharmacokinetics of rosuvastatin: implications of renal impairment, race, and dyslipidaemia. Curr. Med. Res. Opinion 24, 2575-2585 (2008).
Prueksaritanont, T. et al. Pitavastatin is a more sensitive and selective organic anion-transporting polypeptide 1B clinical probe than rosuvastatin. Br. J. Clin. Pharmacol. 78, 587-598 (2014).
Igel, M., Sudhop, T. & von Bergmann, K. Pharmacology of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins), including rosuvastatin and pitavastatin. J. Clin. Pharmacol. 42, 835-845 (2002).
Astra Zeneca Pharmaceuticals. Crestor (rosuvastatin) [package insert]. US Food and Drug Administration . Revised August 2003. Accessed June 30, 2020.
Pfizer Inc., Lipitor (atorvastatin calcium) [package insert]. US Food and Drug Administration . Revised November 2019. Accessed June 30, 2020.
Stern, R.H., Yang, B.-B., Horton, M., Moore, S., Abel, R.B., & Olson, S.C. Renal dysfunction does not alter the pharmacokinetics or LDL-cholesterol reduction. J. Clin. Pharmacol. 37, 816-819 (1997).
Lau, Y.Y., Huang, Y., Frassetto, L. & Benet, L.Z. effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin. Pharmacol. Ther. 81, 194-204 (2007).
Yoshikado, T. et al. PBPK modeling of coproporphyrin i as an endogenous biomarker for drug interactions involving inhibition of hepatic OATP1B1 and OATP1B3. CPT Pharmacometrics Syst. Pharmacol. 7, 739-747 (2018).
Takehara, I. et al. Investigation of glycochenodeoxycholate sulfate and chenodeoxycholate glucuronide as surrogate endogenous probes for drug interaction studies of OATP1B1 and OATP1B3 in healthy Japanese volunteers. Pharm. Res. 34, 1601-1614 (2017).
Takehara, I. et al. Comparative study of the dose-dependence of OATP1B inhibition by rifampicin using probe drugs and endogenous substrates in healthy volunteers. Pharm. Res. 35, 138 (2018).
Substance Nomenclature:
0 (ATP Binding Cassette Transporter, Subfamily B, Member 1)
0 (ATP Binding Cassette Transporter, Subfamily G, Member 2)
0 (Biomarkers)
0 (Liver-Specific Organic Anion Transporter 1)
R60L0SM5BC (Midazolam)
VJT6J7R4TR (Rifampin)
Entry Date(s):
Date Created: 20200725 Date Completed: 20210521 Latest Revision: 20210521
Update Code:
20240104
DOI:
10.1002/cpt.1998
PMID:
32705692
Czasopismo naukowe
Renal impairment (RI) is known to influence the pharmacokinetics of nonrenally eliminated drugs, although the mechanism and clinical impact is poorly understood. We assessed the impact of RI and single dose oral rifampin (RIF) on the pharmacokinetics of CYP3A, OATP1B, P-gp, and BCRP substrates using a microdose cocktail and OATP1B endogenous biomarkers. RI alone had no impact on midazolam (MDZ), maximum plasma concentration (C max ), and area under the curve (AUC), but a progressive increase in AUC with RI severity for dabigatran (DABI), and up to ~2-fold higher AUC for pitavastatin (PTV), rosuvastatin (RSV), and atorvastatin (ATV) for all degrees of RI was observed. RIF did not impact MDZ, had a progressively smaller DABI drug-drug interaction (DDI) with increasing RI severity, a similar 3.1-fold to 4.4-fold increase in PTV and RSV AUC in healthy volunteers and patients with RI, and a diminishing DDI with RI severity from 6.1-fold to 4.7-fold for ATV. Endogenous biomarkers of OATP1B (bilirubin, coproporphyrin I/III, and sulfated bile salts) were generally not impacted by RI, and RIF effects on these biomarkers in RI were comparable or larger than those in healthy volunteers. The lack of a trend with RI severity of PTV and several OATP1B biomarkers, suggests that mechanisms beyond RI directly impacting OATP1B activity could also be considered. The DABI, RSV, and ATV data suggest an impact of RI on intestinal P-gp, and potentially BCRP activity. Therefore, DDI data from healthy volunteers may represent a worst-case scenario for clinically derisking P-gp and BCRP substrates in the setting of RI.
(© 2020 Merck Sharp & Dohme Corp. Clinical Pharmacology & Therapeutics © 2020 American Society for Clinical Pharmacology and Therapeutics.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies