Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

miRNA profiling of biliary intraepithelial neoplasia reveals stepwise tumorigenesis in distal cholangiocarcinoma via the miR-451a/ATF2 axis.

Tytuł:
miRNA profiling of biliary intraepithelial neoplasia reveals stepwise tumorigenesis in distal cholangiocarcinoma via the miR-451a/ATF2 axis.
Autorzy:
Loeffler MA; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
Hu J; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
Kirchner M; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
Wei X; Life Sciences Institute, Zhejiang University, Hangzhou, PR China.
Xiao Y; Life Sciences Institute, Zhejiang University, Hangzhou, PR China.
Albrecht T; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
De La Torre C; Medical Research Centre, University of Heidelberg, Mannheim, Germany.
Sticht C; Medical Research Centre, University of Heidelberg, Mannheim, Germany.
Banales JM; Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain.
Vogel MN; Diagnostic and Interventional Radiology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany.
Pathil-Warth A; Department of Internal Medicine IV, Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg, Germany.
Mehrabi A; Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany.; Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.
Hoffmann K; Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany.; Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.
Rupp C; Department of Internal Medicine IV, Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg, Germany.; Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.
Köhler B; Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.; Department of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases, Heidelberg, Germany.
Springfeld C; Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.; Department of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases, Heidelberg, Germany.
Schirmacher P; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.; Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.
Ji J; Life Sciences Institute, Zhejiang University, Hangzhou, PR China.
Roessler S; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.; Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.
Goeppert B; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.; Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.
Źródło:
The Journal of pathology [J Pathol] 2020 Nov; Vol. 252 (3), pp. 239-251. Date of Electronic Publication: 2020 Sep 15.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Chichester : John Wiley And Sons
Original Publication: London, Oliver & Boyd.
MeSH Terms:
Gene Expression Regulation, Neoplastic*
Activating Transcription Factor 2/*metabolism
Bile Duct Neoplasms/*genetics
Biomarkers, Tumor/*genetics
Carcinoma in Situ/*genetics
Cholangiocarcinoma/*genetics
MicroRNAs/*metabolism
ADAM10 Protein/metabolism ; Amyloid Precursor Protein Secretases/metabolism ; Bile Duct Neoplasms/metabolism ; Bile Duct Neoplasms/pathology ; Bile Ducts, Extrahepatic/metabolism ; Bile Ducts, Extrahepatic/pathology ; Biomarkers, Tumor/metabolism ; Carcinogenesis/genetics ; Carcinoma in Situ/metabolism ; Carcinoma in Situ/pathology ; Case-Control Studies ; Cell Movement/genetics ; Cholangiocarcinoma/metabolism ; Cholangiocarcinoma/pathology ; Down-Regulation ; Female ; Gene Expression Profiling ; Humans ; Male ; Membrane Proteins/metabolism
References:
Banales JM, Cardinale V, Carpino G, et al. Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol 2016; 13: 261-280.
Kendall T, Verheij J, Gaudio E, et al. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int 2019; 39(Suppl1): 7-18.
Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; 319: 525-532.
Reid BJ, Barrett MT, Galipeau PC, et al. Barrett's esophagus: ordering the events that lead to cancer. Eur J Cancer Prev 1996; 5(Suppl2): 57-65.
Valenzuela M, Julian TB. Ductal carcinoma in situ: biology, diagnosis, and new therapies. Clin Breast Cancer 2007; 7: 676-681.
Hruban RH, Adsay NV, Albores-Saavedra J, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 2001; 25: 579-586.
Nagtegaal ID, Odze RD, Klimstra D, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology 2019; 76: 182-188.
Mertens JC, Rizvi S, Gores GJ. Targeting cholangiocarcinoma. Biochim Biophys Acta 2018; 1864(4 Pt B): 1454-1460.
Hsu M, Sasaki M, Igarashi S, et al. KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer 2013; 119: 1669-1674.
Nakanuma Y, Sasaki M, Sato Y, et al. Multistep carcinogenesis of perihilar cholangiocarcinoma arising in the intrahepatic large bile ducts. World J Hepatol 2009; 1: 35-42.
Itatsu K, Zen Y, Ohira S, et al. Immunohistochemical analysis of the progression of flat and papillary preneoplastic lesions in intrahepatic cholangiocarcinogenesis in hepatolithiasis. Liver Int 2007; 27: 1174-1184.
Sato Y, Harada K, Sasaki M, et al. Histological characterization of biliary intraepithelial neoplasia with respect to pancreatic intraepithelial neoplasia. Int J Hepatol 2014; 2014: 678260.
Walter D, Herrmann E, Winkelmann R, et al. Role of CD15 expression in dysplastic and neoplastic tissue of the bile duct - a potential novel tool for differential diagnosis of indeterminate biliary stricture. Histopathology 2016; 69: 962-970.
Bergquist A, Seth E. Epidemiology of cholangiocarcinoma. Best Pract Res Clin Gastroenterol 2015; 29: 221-232.
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15-20.
Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011; 12: 861-874.
Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834-838.
Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res 2016; 76: 3666-3670.
Salati M, Braconi C. Noncoding RNA in cholangiocarcinoma. Semin Liver Dis 2019; 39: 13-25.
Puik JR, Meijer LL, Le Large TY, et al. miRNA profiling for diagnosis, prognosis and stratification of cancer treatment in cholangiocarcinoma. Pharmacogenomics 2017; 18: 1343-1358.
Merino-Azpitarte M, Lozano E, Perugorria MJ, et al. SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma. J Hepatol 2017; 67: 72-83.
Hannus M, Beitzinger M, Engelmann JC, et al. siPools: highly complex but accurately defined siRNA pools eliminate off-target effects. Nucleic Acids Res 2014; 42: 8049-8061.
R Core Team. R: A Language and Environment for Statistical Computing [Internet]. R Foundation for Statistical Computing; Vienna, 2017; [Accessed 20 November 2019]. Available from: https://www.R-project.org/.
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43: e47.
Hochberg Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 1988; 75: 800-802.
Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9: 676-682.
Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015; 4: e05005.
Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 2015; 12: 697.
Sato Y, Harada K, Sasaki M, et al. Histological characteristics of biliary intraepithelial neoplasia-3 and intraepithelial spread of cholangiocarcinoma. Virchows Arch 2013; 462: 421-427.
Sato Y, Sasaki M, Harada K, et al. Pathological diagnosis of flat epithelial lesions of the biliary tract with emphasis on biliary intraepithelial neoplasia. J Gastroenterol 2014; 49: 64-72.
Bickenbach K, Galka E, Roggin KK. Molecular mechanisms of cholangiocarcinogenesis: are biliary intraepithelial neoplasia and intraductal papillary neoplasms of the bile duct precursors to cholangiocarcinoma? Surg Oncol Clin North Am 2009; 18: 215-224.
Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer. Nat Genet 2015; 47: 1003-1010.
Yin Y, Song M, Gu B, et al. Systematic analysis of key miRNAs and related signaling pathways in colorectal tumorigenesis. Gene 2016; 578: 177-184.
Yang R, Chen Y, Tang C, et al. MicroRNA-144 suppresses cholangiocarcinoma cell proliferation and invasion through targeting platelet activating factor acetylhydrolase isoform 1b. BMC Cancer 2014; 14: 917.
Dore LC, Amigo JD, Dos Santos CO, et al. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci U S A 2008; 105: 3333-3338.
Altuvia Y, Landgraf P, Lithwick G, et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 2005; 33: 2697-2706.
Berezikov E, Guryev V, van de Belt J, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005; 120: 21-24.
Yamada Y, Arai T, Kojima S, et al. Regulation of antitumor miR-144-5p targets oncogenes: direct regulation of syndecan-3 and its clinical significance. Cancer Sci 2018; 109: 2919-2936.
Yang J-S, Maurin T, Robine N, et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc Natl Acad Sci U S A 2010; 107: 15163-15168.
Gao Z, Zhang P, Xie M, et al. miR-144/451 cluster plays an oncogenic role in esophageal cancer by inhibiting cell invasion. Cancer Cell Int 2018; 18: 184.
Babapoor S, Fleming E, Wu R, et al. A novel miR-451a isomiR, associated with amelanotypic phenotype, acts as a tumor suppressor in melanoma by retarding cell migration and invasion. PLoS One 2014; 9: e107502.
Kawai S, Fujii T, Kukimoto I, et al. Identification of miRNAs in cervical mucus as a novel diagnostic marker for cervical neoplasia. Sci Rep 2018; 8: 7070.
Xu K, Han B, Bai Y, et al. MiR-451a suppressing BAP31 can inhibit proliferation and increase apoptosis through inducing ER stress in colorectal cancer. Cell Death Dis 2019; 10: 152.
Xiao R, Li C, Chai B. miRNA-144 suppresses proliferation and migration of colorectal cancer cells through GSPT1. Biomed Pharmacother 2015; 74: 138-144.
Cao T, Li H, Hu Y, et al. miR-144 suppresses the proliferation and metastasis of hepatocellular carcinoma by targeting E2F3. Tumour Biol 2014; 35: 10759-10764.
Lv G, Hu Z, Tie Y, et al. MicroRNA-451 regulates activating transcription factor 2 expression and inhibits liver cancer cell migration. Oncol Rep 2014; 32: 1021-1028.
Long J, Xiong J, Bai Y, et al. Construction and investigation of a lncRNA-associated ceRNA regulatory network in cholangiocarcinoma. Front Oncol 2019; 9: 649.
Shen Y-Y, Cui J-Y, Yuan J, et al. MiR-451a suppressed cell migration and invasion in non-small cell lung cancer through targeting ATF2. Eur Rev Med Pharmacol Sci 2018; 22: 5554-5561.
Watson G, Ronai ZA, Lau E. ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease. Pharmacol Res 2017; 119: 347-357.
Lau E, Kluger H, Varsano T, et al. PKCε promotes oncogenic functions of ATF2 in the nucleus while blocking its apoptotic function at mitochondria. Cell 2012; 148: 543-555.
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44-57.
Dai M, Wang P, Boyd AD, et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 2005; 33: e175.
Contributed Indexing:
Keywords: ATF2; biliary intraepithelial neoplasia; cell invasion; cell migration; cholangiocarcinogenesis; cholangiocarcinoma; miR-144-3p; miR-451a; miRNA; precursor lesion
Substance Nomenclature:
0 (ATF2 protein, human)
0 (Activating Transcription Factor 2)
0 (Biomarkers, Tumor)
0 (MIRN144 microRNA, human)
0 (MIRN451 microRNA, human)
0 (Membrane Proteins)
0 (MicroRNAs)
EC 3.4.- (Amyloid Precursor Protein Secretases)
EC 3.4.24.81 (ADAM10 Protein)
EC 3.4.24.81 (ADAM10 protein, human)
Entry Date(s):
Date Created: 20200726 Date Completed: 20201217 Latest Revision: 20201217
Update Code:
20240104
DOI:
10.1002/path.5514
PMID:
32710569
Czasopismo naukowe
Distal cholangiocarcinoma (dCCA) is a biliary tract cancer with a dismal prognosis and is often preceded by biliary intraepithelial neoplasia (BilIN), representing the most common biliary non-invasive precursor lesion. BilIN are histologically well defined but have not so far been characterised systematically at the molecular level. The aim of this study was to determine miRNA-regulated genes in cholangiocarcinogenesis via BilIN. We used a clinicopathologically well-characterised cohort of 12 dCCA patients. Matched samples of non-neoplastic biliary epithelia, BilIN and invasive tumour epithelia of each patient were isolated from formalin-fixed paraffin-embedded tissue sections by laser microdissection. The resulting 36 samples were subjected to total RNA extraction and the expression of 798 miRNAs was assessed using the Nanostring® technology. Candidate miRNAs were validated by RT-qPCR and functionally investigated following lentiviral overexpression in dCCA-derived cell lines. Potential direct miRNA target genes were identified by microarray and prediction algorithms and were confirmed by luciferase assay. We identified 49 deregulated miRNAs comparing non-neoplastic and tumour tissue. Clustering of these miRNAs corresponded to the three stages of cholangiocarcinogenesis, supporting the concept of BilIN as a tumour precursor. Two downregulated miRNAs, i.e. miR-451a (-10.9-fold down) and miR-144-3p (-6.3-fold down), stood out by relative decrease. Functional analyses of these candidates revealed a migration inhibitory effect in dCCA cell lines. Activating transcription factor 2 (ATF2) and A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) were identified as direct miR-451a target genes. Specific ATF2 inhibition by pooled siRNAs reproduced the inhibitory impact of miR-451a on cancer cell migration. Thus, our data support the concept of BilIN as a direct precursor of invasive dCCA at the molecular level. In addition, we identified miR-451a and miR-144-3p as putative tumour suppressors attenuating cell migration by inhibiting ATF2 in the process of dCCA tumorigenesis. © The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
(© The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies