Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Detrended fluctuation analysis of gait dynamics when entraining to music and metronomes at different tempi in persons with multiple sclerosis.

Tytuł:
Detrended fluctuation analysis of gait dynamics when entraining to music and metronomes at different tempi in persons with multiple sclerosis.
Autorzy:
Moumdjian L; IPEM Institute of Psychoacoustics and Electronic Music, Faculty of Arts and Philosophy, Ghent University, Gent, Belgium. .; REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium. .
Maes PJ; IPEM Institute of Psychoacoustics and Electronic Music, Faculty of Arts and Philosophy, Ghent University, Gent, Belgium.
Dalla Bella S; International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada.; Department of Psychology, University of Montreal, Montreal, Canada.; Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada.; University of Economics and Human Sciences in Warsaw, Warsaw, Poland.
Decker LM; Normandie Univ, UNICAEN, INSERM, COMETE, GIP CYCERON, Caen, France.
Moens B; IPEM Institute of Psychoacoustics and Electronic Music, Faculty of Arts and Philosophy, Ghent University, Gent, Belgium.
Feys P; REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium.
Leman M; IPEM Institute of Psychoacoustics and Electronic Music, Faculty of Arts and Philosophy, Ghent University, Gent, Belgium.
Źródło:
Scientific reports [Sci Rep] 2020 Jul 31; Vol. 10 (1), pp. 12934. Date of Electronic Publication: 2020 Jul 31.
Typ publikacji:
Clinical Trial; Journal Article; Multicenter Study; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Acoustic Stimulation*
Auditory Perception*
Gait*
Time Perception*
Walking*
Multiple Sclerosis/*physiopathology
Adult ; Aged ; Female ; Humans ; Male ; Middle Aged
References:
Hausdorff, J. M. Gait dynamics, fractals and falls: Finding meaning in the stride-to-stride fluctuations of human walking. Hum. Mov. Sci. 26, 555–589. https://doi.org/10.1016/j.humov.2007.05.003 (2007). (PMID: 10.1016/j.humov.2007.05.003176187012267927)
Hausdorff, J. M., Peng, C. K., Ladin, Z., Wei, J. Y. & Goldberger, A. L. Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J. Appl. Physiol. 1985(78), 349–358. https://doi.org/10.1152/jappl.1995.78.1.349 (1995). (PMID: 10.1152/jappl.1995.78.1.349)
Hausdorff, J. M. et al. Fractal dynamics of human gait: Stability of long-range correlations in stride interval fluctuations. J. Appl. Physiol. 1985(80), 1448–1457. https://doi.org/10.1152/jappl.1996.80.5.1448 (1996). (PMID: 10.1152/jappl.1996.80.5.1448)
Hausdorff, J. M., Rios, D. A. & Edelberg, H. K. Gait variability and fall risk in community-living older adults: A 1-year prospective study. Arch. Phys. Med. Rehabil. 82, 1050–1056. https://doi.org/10.1053/apmr.2001.24893 (2001). (PMID: 10.1053/apmr.2001.2489311494184)
Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y. & Goldberger, A. L. Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov. Disord. 13, 428–437. https://doi.org/10.1002/mds.870130310 (1998). (PMID: 10.1002/mds.8701303109613733)
Hausdorff, J. M. et al. Altered fractal dynamics of gait: Reduced stride-interval correlations with aging and Huntington’s disease. J. Appl. Physiol. 1985(82), 262–269. https://doi.org/10.1152/jappl.1997.82.1.262 (1997). (PMID: 10.1152/jappl.1997.82.1.262)
Kaipust, J. P., Huisinga, J. M., Filipi, M. & Stergiou, N. Gait variability measures reveal differences between multiple sclerosis patients and healthy controls. Mot. Control 16, 229–244 (2012). (PMID: 10.1123/mcj.16.2.229)
Peng, C. K. et al. Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys. Rev. Lett. 70, 1343–1346. https://doi.org/10.1103/PhysRevLett.70.1343 (1993). (PMID: 10.1103/PhysRevLett.70.1343)
Peng, C. K., Havlin, S., Stanley, H. E. & Goldberger, A. L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87. https://doi.org/10.1063/1.166141 (1995). (PMID: 10.1063/1.16614111538314)
Maraun, D., Rust, H. W. & Timmer, J. Tempting long-memory—on the interpretation of DFA results. Nonlinear Process. Geophys. 11, 495–503. https://doi.org/10.5194/npg-11-495-2004 (2004). (PMID: 10.5194/npg-11-495-2004)
Stergiou, N., Buzzi, U.H., Kurz, M.J., Heidel, J. in Innovative analyses of human movement. 63–90 (Human Kinetics, 2004).
Dingwell, J. B. & Cusumano, J. P. Re-interpreting detrended fluctuation analyses of stride-to-stride variability in human walking. Gait Posture 32, 348–353. https://doi.org/10.1016/j.gaitpost.2010.06.004 (2010). (PMID: 10.1016/j.gaitpost.2010.06.004206050972942973)
Roerdink, M., de Jonge, C. P., Smid, L. M. & Daffertshofer, A. Tightening up the control of treadmill walking: Effects of maneuverability range and acoustic pacing on stride-to-stride fluctuations. Front. Physiol. 10, 257. https://doi.org/10.3389/fphys.2019.00257 (2019). (PMID: 10.3389/fphys.2019.00257309677876440225)
Repp, B. H. & Su, Y. H. Sensorimotor synchronization: A review of recent research (2006–2012). Psychon Bull Rev 20, 403–452. https://doi.org/10.3758/s13423-012-0371-2 (2013). (PMID: 10.3758/s13423-012-0371-223397235)
Leman, M. The Expressive Moment: How Interaction (with Music) Shapes Human Empowerment (MIT press, Boca Raton, 2016).
Moumdjian, L., Buhmann, J., Willems, I., Feys, P. & Leman, M. Entrainment and synchronization to auditory stimuli during walking in healthy and neurological populations: A methodological systematic review. Front. Hum. Neurosci. 12, 263. https://doi.org/10.3389/fnhum.2018.00263 (2018). (PMID: 10.3389/fnhum.2018.00263299974916028729)
Bennett, M., Schatz, M.F., Rockwood, H., Wiesenfeld, K. in Mathematical, Physical and Engineering Sciences. 563–579 (The Royal Society).
Moumdjian, L. et al. A model of different cognitive processes during spontaneous and intentional coupling to music in multiple sclerosis. Ann. N. Y. Acad. Sci. 1445, 27–38. https://doi.org/10.1111/nyas.14023 (2019). (PMID: 10.1111/nyas.1402330865313)
Delignieres, D. & Torre, K. Fractal dynamics of human gait: A reassessment of the 1996 data of Hausdorff et al. J Appl Physiol (1985) 106, 1272–1279. https://doi.org/10.1152/japplphysiol.90757.2008 (2009). (PMID: 10.1152/japplphysiol.90757.2008)
Sejdic, E., Fu, Y., Pak, A., Fairley, J. A. & Chau, T. The effects of rhythmic sensory cues on the temporal dynamics of human gait. PLoS ONE 7, e43104. https://doi.org/10.1371/journal.pone.0043104 (2012). (PMID: 10.1371/journal.pone.0043104229279463424126)
Terrier, P. & Deriaz, O. Persistent and anti-persistent pattern in stride-to-stride variability of treadmill walking: Influence of rhythmic auditory cueing. Hum. Mov. Sci. 31, 1585–1597. https://doi.org/10.1016/j.humov.2012.05.004 (2012). (PMID: 10.1016/j.humov.2012.05.00423164626)
Terrier, P. & Deriaz, O. Non-linear dynamics of human locomotion: Effects of rhythmic auditory cueing on local dynamic stability. Front. Physiol. 4, 230. https://doi.org/10.3389/fphys.2013.00230 (2013). (PMID: 10.3389/fphys.2013.00230240275293759806)
Marmelat, V., Torre, K., Beek, P. J. & Daffertshofer, A. Persistent fluctuations in stride intervals under fractal auditory stimulation. PLoS ONE 9, e91949. https://doi.org/10.1371/journal.pone.0091949 (2014). (PMID: 10.1371/journal.pone.0091949246514553961269)
Terrier, P. Fractal fluctuations in human walking: Comparison between auditory and visually guided stepping. Ann. Biomed. Eng. 44, 2785–2793. https://doi.org/10.1007/s10439-016-1573-y (2016). (PMID: 10.1007/s10439-016-1573-y26903091)
Choi, J. S., Kang, D. W., Seo, J. W. & Tack, G. R. Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill. J. Biomech. 65, 154–160. https://doi.org/10.1016/j.jbiomech.2017.10.015 (2017). (PMID: 10.1016/j.jbiomech.2017.10.01529096982)
Dotov, D. G. et al. Biologically-variable rhythmic auditory cues are superior to isochronous cues in fostering natural gait variability in Parkinson’s disease. Gait Post. 51, 64–69. https://doi.org/10.1016/j.gaitpost.2016.09.020 (2017). (PMID: 10.1016/j.gaitpost.2016.09.020)
Leow, L. A., Parrott, T. & Grahn, J. A. Individual differences in beat perception affect gait responses to low- and high-groove music. Front. Hum. Neurosci. 8, 811. https://doi.org/10.3389/fnhum.2014.00811 (2014). (PMID: 10.3389/fnhum.2014.00811253745214205839)
Hunt, N., McGrath, D. & Stergiou, N. The influence of auditory-motor coupling on fractal dynamics in human gait. Sci. Rep. 4, 5879. https://doi.org/10.1038/srep05879 (2014). (PMID: 10.1038/srep05879250809364118321)
Moumdjian, L. et al. Walking to music and metronome at various tempi in persons with multiple sclerosis: A basis for Rehabilitation. Neurorehabil. Neural Repair 33, 464–475. https://doi.org/10.1177/1545968319847962 (2019). (PMID: 10.1177/154596831984796231079541)
Moumdjian, L. et al. Continuous 12 min walking to music, metronomes and in silence: Auditory-motor coupling and its effects on perceived fatigue, motivation and gait in persons with multiple sclerosis. Mult. Scler. Relat. Disord. 35, 92–99. https://doi.org/10.1016/j.msard.2019.07.014 (2019). (PMID: 10.1016/j.msard.2019.07.01431357124)
Seebacher, B., Kuisma, R., Glynn, A. & Berger, T. The effect of rhythmic-cued motor imagery on walking, fatigue and quality of life in people with multiple sclerosis: A randomised controlled trial. Mult. Scler. 23, 286–296. https://doi.org/10.1177/1352458516644058 (2017). (PMID: 10.1177/135245851664405827055804)
Martin, C. L. et al. Gait and balance impairment in early multiple sclerosis in the absence of clinical disability. Mult. Scler. 12, 620–628. https://doi.org/10.1177/1352458506070658 (2006). (PMID: 10.1177/135245850607065817086909)
Filli, L. et al. Profiling walking dysfunction in multiple sclerosis: Characterisation, classification and progression over time. Sci. Rep. 8, 4984. https://doi.org/10.1038/s41598-018-22676-0 (2018). (PMID: 10.1038/s41598-018-22676-0295635335862880)
Feys, P. et al. Spatio-temporal gait parameters change differently according to speed instructions and walking history in MS patients with different ambulatory dysfunction. Mult. Scler. Relat. Disord. 2, 238–246. https://doi.org/10.1016/j.msard.2013.01.004 (2013). (PMID: 10.1016/j.msard.2013.01.00425877730)
Hogan, N. & Sternad, D. On rhythmic and discrete movements: Reflections, definitions and implications for motor control. Exp. Brain Res. 181, 13–30. https://doi.org/10.1007/s00221-007-0899-y (2007). (PMID: 10.1007/s00221-007-0899-y17530234)
Lemoine, L. & Delignieres, D. Detrended windowed (lag one) autocorrelation: A new method for distinguishing between event-based and emergent timing. Q. J. Exp. Psychol. (Hove) 62, 585–604. https://doi.org/10.1080/17470210802131896 (2009). (PMID: 10.1080/17470210802131896)
Huys, R., Studenka, B. E., Rheaume, N. L., Zelaznik, H. N. & Jirsa, V. K. Distinct timing mechanisms produce discrete and continuous movements. PLoS Comput. Biol. 4, e1000061. https://doi.org/10.1371/journal.pcbi.1000061 (2008). (PMID: 10.1371/journal.pcbi.1000061184372362329590)
Decker, L. M., Cignetti, F. & Stergiou, N. Executive function orchestrates regulation of task-relevant gait fluctuations. Gait Post. 38, 537–540. https://doi.org/10.1016/j.gaitpost.2012.12.018 (2013). (PMID: 10.1016/j.gaitpost.2012.12.018)
Schwartze, M., Tavano, A., Schroger, E. & Kotz, S. A. Temporal aspects of prediction in audition: Cortical and subcortical neural mechanisms. Int. J. Psychophysiol. 83, 200–207. https://doi.org/10.1016/j.ijpsycho.2011.11.003 (2012). (PMID: 10.1016/j.ijpsycho.2011.11.00322108539)
Lewis, P. A. & Miall, R. C. Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Curr. Opin. Neurobiol. 13, 250–255 (2003). (PMID: 10.1016/S0959-4388(03)00036-9)
Hove, M. J., Suzuki, K., Uchitomi, H., Orimo, S. & Miyake, Y. Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson’s patients. PLoS ONE 7, e32600. https://doi.org/10.1371/journal.pone.0032600 (2012). (PMID: 10.1371/journal.pone.0032600223967833292577)
Dotov, D. G. et al. The role of interaction and predictability in the spontaneous entrainment of movement. J. Exp. Psychol. Gen. 148, 1041–1057. https://doi.org/10.1037/xge0000609 (2019). (PMID: 10.1037/xge000060931180717)
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P. & Pezzulo, G. Active inference: A process theory. Neural. Comput. 29, 1–49 (2017). (PMID: 10.1162/NECO_a_00912)
Schoner, G. Timing, clocks, and dynamical systems. Brain Cogn. 48, 31–51. https://doi.org/10.1006/brcg.2001.1302 (2002). (PMID: 10.1006/brcg.2001.130211812031)
Varlet, M., Marin, L., Issartel, J., Schmidt, R. C. & Bardy, B. G. Continuity of visual and auditory rhythms influences sensorimotor coordination. PLoS ONE 7, e44082. https://doi.org/10.1371/journal.pone.0044082 (2012). (PMID: 10.1371/journal.pone.0044082230284883446958)
Jordan, K., Challis, J. H. & Newell, K. M. Walking speed influences on gait cycle variability. Gait Post. 26, 128–134. https://doi.org/10.1016/j.gaitpost.2006.08.010 (2007). (PMID: 10.1016/j.gaitpost.2006.08.010)
Friston, K. Does predictive coding have a future?. Nat. Neurosci. 21, 1019–1021. https://doi.org/10.1038/s41593-018-0200-7 (2018). (PMID: 10.1038/s41593-018-0200-730038278)
Dotov, D. G., Bardy, B. G. & Dalla Bella, S. The role of environmental constraints in walking: Effects of steering and sharp turns on gait dynamics. Sci. Rep. 6, 28374. https://doi.org/10.1038/srep28374 (2016). (PMID: 10.1038/srep28374273455774937443)
Motl, R. W. et al. Validity of the timed 25-foot walk as an ambulatory performance outcome measure for multiple sclerosis. Mult. Scler. 23, 704–710. https://doi.org/10.1177/1352458517690823 (2017). (PMID: 10.1177/1352458517690823282068285405807)
Sebastiao, E., Sandroff, B. M., Learmonth, Y. C. & Motl, R. W. Validity of the timed up and go test as a measure of functional mobility in persons with multiple sclerosis. Arch. Phys. Med. Rehabil. 97, 1072–1077. https://doi.org/10.1016/j.apmr.2015.12.031 (2016). (PMID: 10.1016/j.apmr.2015.12.03126944709)
Moens, B. et al. Encouraging spontaneous synchronisation with D-Jogger, an adaptive music player that aligns movement and music. PLoS ONE 9, e114234. https://doi.org/10.1371/journal.pone.0114234 (2014). (PMID: 10.1371/journal.pone.0114234254897424260851)
Buhmann, J., Masson, J.-B., Cochen De Cock, V., Damm, L., Leman, M. in Motor Behaviour and Emotion International Congress.
Bryce, R. M. & Sprague, K. B. Revisiting detrended fluctuation analysis. Sci. Rep. 2, 315. https://doi.org/10.1038/srep00315 (2012). (PMID: 10.1038/srep00315224199913303145)
Kuznetsov, N. A. & Rhea, C. K. Power considerations for the application of detrended fluctuation analysis in gait variability studies. PLoS ONE 12, e0174144. https://doi.org/10.1371/journal.pone.0174144 (2017). (PMID: 10.1371/journal.pone.0174144283238715360325)
Goldberger, A. L. et al. Fractal dynamics in physiology: Alterations with disease and aging. Proc. Natl. Acad. Sci. U.S.A. 99(Suppl 1), 2466–2472. https://doi.org/10.1073/pnas.012579499 (2002). (PMID: 10.1073/pnas.01257949911875196128562)
McGrath, D. in Nonlinear Analysis for Human Movement Variability (ed N. Stergiou) 261–300 (Taylor & Francis, 2016).
Dingwell, J. B. & Cusumano, J. P. Humans use multi-objective control to regulate lateral foot placement when walking. PLoS Comput. Biol. 15, e1006850. https://doi.org/10.1371/journal.pcbi.1006850 (2019). (PMID: 10.1371/journal.pcbi.1006850308406206422313)
Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. & Farmer, D. Testing for nonlinearity in time series: The method of surrogate data. Phys. D 58, 77–94 (1992). (PMID: 10.1016/0167-2789(92)90102-S)
Schreiber, T. & Schmitz, A. Surrogate time series. Phys. D 142, 346–382 (2000). (PMID: 10.1016/S0167-2789(00)00043-9)
Fisher, N. I. Statistical Analysis of Circular Data (Cambridge University Press, Cambridge, 1995).
Cremers, J. & Klugkist, I. One direction? A tutorial for circular data analysis using R with examples in cognitive psychology. Front. Psychol. 9, 2040. https://doi.org/10.3389/fpsyg.2018.02040 (2018). (PMID: 10.3389/fpsyg.2018.02040304256706218623)
Washabaugh, E. P., Kalyanaraman, T., Adamczyk, P. G., Claflin, E. S. & Krishnan, C. Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Post. 55, 87–93. https://doi.org/10.1016/j.gaitpost.2017.04.013 (2017). (PMID: 10.1016/j.gaitpost.2017.04.013)
Socie, M. J., Motl, R. W., Pula, J. H., Sandroff, B. M. & Sosnoff, J. J. Gait variability and disability in multiple sclerosis. Gait Post. 38, 51–55. https://doi.org/10.1016/j.gaitpost.2012.10.012 (2013). (PMID: 10.1016/j.gaitpost.2012.10.012)
Entry Date(s):
Date Created: 20200802 Date Completed: 20201209 Latest Revision: 20210731
Update Code:
20240104
PubMed Central ID:
PMC7395137
DOI:
10.1038/s41598-020-69667-8
PMID:
32737347
Czasopismo naukowe
In persons with multiple sclerosis (PwMS), synchronizing walking to auditory stimuli such as to music and metronomes have been shown to be feasible, and positive clinical effects have been reported on step frequency and perception of fatigue. Yet, the dynamic interaction during the process of synchronization, such as the coupling of the steps to the beat intervals in music and metronomes, and at different tempi remain unknown. Understanding these interactions are clinically relevant, as it reflects the pattern of step intervals over time, known as gait dynamics. 28 PwMS and 29 healthy controls were instructed to walk to music and metronomes at 6 tempi (0-10% in increments of 2%). Detrended fluctuation analysis was applied to calculate the fractal statistical properties of the gait time-series to quantify gait dynamics by the outcome measure alpha. The results showed no group differences, but significantly higher alpha when walking to music compared to metronomes, and when walking to both stimuli at tempi + 8, + 10% compared to lower tempi. These observations suggest that the precision and adaptation gain differ during the coupling of the steps to beats in music compared to metronomes (continuous compared to discrete auditory structures) and at different tempi (different inter-beat-intervals).
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies