Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Electrocatalytic oxidation of PCP-Na by a novel nano-PbO 2 anode: degradation mechanism and toxicity assessment.

Tytuł:
Electrocatalytic oxidation of PCP-Na by a novel nano-PbO 2 anode: degradation mechanism and toxicity assessment.
Autorzy:
Duan X; Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, 136000, China. .; Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China. .
Sui X; Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, 136000, China.
Wang Q; Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, 136000, China.
Wang W; Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
Li N; Key Laboratory of Environmental Materials and Pollution Control (Jilin Normal University), Education Department of Jilin Province, Siping, 136000, China.
Chang L; Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China. .
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2020 Dec; Vol. 27 (35), pp. 43656-43669. Date of Electronic Publication: 2020 Jul 31.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Oxides*
Water Pollutants, Chemical*/analysis
Water Pollutants, Chemical*/toxicity
Animals ; Electrodes ; Oxidation-Reduction ; Titanium
References:
Amadelli R, Armelao L, Velichenko AB, Nikolenko NV, Girenko DV, Kovalyov SV, Danilov FI (1999) Oxygen and ozone evolution at fluoride modified lead dioxide electrodes. Electrochim Acta 45:713–720.
An H, Li Q, Tao D, Cui H, Xu X, Ding L, Sun L, Zhai J (2011) The synthesis and characterization of Ti/SnO 2 -Sb 2 O 3 /PbO 2 electrodes: the influence of morphology caused by different electrochemical deposition time. Appl Surf Sci 258:218–224.
Ansari A, Nematollahi D (2020) Convergent paired electrocatalytic degradation of p-dinitrobenzene by Ti/SnO 2 -Sb/β-PbO 2 anode. A new insight into the electrochemical degradation mechanism. Appl Catal B Environ 261:118226–118237.
Bernard BK, Hoberman AM, Brown WR, Ranpuria AK, Christian MS (2002) Oral (gavage) two-generation (one litter per generation) reproduction study of pentachlorophenol (penta) in rats. Int J Toxicol 21:301–318.
Bian X, Xia Y, Zhan T, Wang L, Zhou W, Dai Q, Chen J (2019) Electrochemical removal of amoxicillin using a cu doped PbO 2 electrode: electrode characterization, operational parameters optimization and degradation mechanism. Chemosphere 233:762–770.
Brug GJ, van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem 176:275–295.
Cai J, Zhou M, Pan Y, du X, Lu X (2019) Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on blue-TiO 2 nanotubes anode. Appl Catal B Environ 257:117902–117914.
Chai S, Zhao G, Wang Y, Zhang YN, Wang Y, Jin Y, Huang X (2014) Fabrication and enhanced electrocatalytic activity of 3D highly ordered macroporous PbO 2 electrode for recalcitrant pollutant incineration. Appl Catal B Environ 147:275–286.
Cheng J, Xue L, Zhu M et al (2019) Nitrate supply and sulfate-reducing suppression facilitate the removal of pentachlorophenol in a flooded mangrove soil. Environ Pollut 244:729–800.
Cui Y, Liang L, Zhong Q, He Q, Shan X, Chen K, Huang F (2017) The association of cancer risk with pentachlorophenol exposure: focusing on community population in the areas along certain section of Yangtze River in China. Environ Pollut 224:729–738.
Duan X, Ma F, Yuan Z, Chang L, Jin X (2013) Electrochemical degradation of phenol in aqueous solution using PbO 2 anode. J Taiwan Inst Chem E 44:95–102.
Duan X, Sui X, Wang W, Bai W, Chang L (2019) Fabrication of PbO 2 /SnO 2 composite anode for electrochemical degradation of 3-chlorophenol in aqueous solution. Appl Surf Sci 494:211–222.
Duan P, Gao S, Lei J, Li X, Hu X (2020) Electrochemical oxidation of ceftazidime with graphite/CNT-Ce/PbO 2 –Ce anode: parameter optimization, toxicity analysis and degradation pathway. Environ Pollut 263:114436–114447.
Elaissaoui I, Akrout H, Grassini S, Fulginiti D, Bousselmi L (2019) Effect of coating method on the structure and properties of a novel PbO 2 anode for electrochemical oxidation of Amaranth dye. Chemosphere 217:26–34.
Fang Q, Shi X, Zhang L, Wang Q, Wang X, Guo Y, Zhou B (2015) Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. J Hazard Mater 283:897–904.
García-Espinoza JD, Nacheva PM (2019) Degradation of pharmaceutical compounds in water by oxygenated electrochemical oxidation: parametric optimization, kinetic studies and toxicity assessment. Sci Total Environ 691:417–429.
He Y, Wang X, Huang W, Chen R, Zhang W, Li H, Lin H (2018) Hydrophobic networked PbO 2 electrode for electrochemical oxidation of paracetamol drug and degradation mechanism kinetics. Chemosphere 193:89–99.
Jiang J, Wu S, Lv L, Liu X, Chen L, Zhao X, Wang Q (2019) Mitochondrial dysfunction, apoptosis and transcriptomic alterations induced by four strobilurins in zebrafish (Danio rerio) early life stages. Environ Pollut 253:722–730.
Jiang N, Wang Y, Zhao Q, Ye Z (2020) Application of Ti/IrO 2 electrode in the electrochemical oxidation of the TNT red water. Environ Pollut 259:113801–113807.
Khuzwayo Z, Chirwa EMN (2017) The impact of alkali metal halide electron donor complexes in thephotocatalytic degradation of pentachlorophenol. J Hazard Mater 321:424–431.
Kong H, Huang W, Lin H, Lu H, Zhang W (2012) Effect of SnO 2 -Sb 2 O 5 interlayer on electrochemical performances of a Ti-substrate lead dioxide electrode. Chin J Chem 30:2059–2065.
Li X, Xu H, Yan W (2016) Fabrication and characterization of PbO 2 electrode modified with polyvinylidene fluoride (PVDF). Appl Surf Sci 389:278–286.
Li H, Chen S, Ren LY, Zhou LY, Tan XJ, Zhu Y, Belver C, Bedia J, Yang J (2019) Biochar mediates activation of aged nanoscale ZVI by Shewanella putrefaciens CN32 to enhance the degradation of pentachlorophenol. Chem Eng J 368:148–156.
Lin Z, Bai J, Zhen Z, Lao S, Li W, Wu Z, Li Y, Spiro B, Zhang D (2016) Enhancing pentachlorophenol degradation by vermicomposting associated bioremediation. Ecol Eng 87:288–294.
Liu B, Wang S, Wang C, Chen Y, Ma B, Zhang J (2019) Surface morphology and electrochemical properties of RuO 2 -doped Ti/IrO 2 -ZrO 2 anodes for oxygen evolution reaction. J Alloy Compd 778:593–602.
Ma HY, Zhao L, Guo LH, Zhang H, Chen FJ, Yu WC (2019) Roles of reactive oxygen species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO 2 /UV. J Hazard Mater 369:719–726.
Meng LY, Wang B, Ma MG et al (2016) The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater. Today Chem 1–2:63–83.
Montilla F, Morallón E, de Battisti A, Vázquez JL (2004) Preparation and characterization of antimony-doped tin dioxide electrodes. Part 1. Electrochemical characterization. J Phys Chem 108:5036–5043.
Morales J, Petkova G, Cruz M et al (2004) Nanostructured lead dioxide thin electrode. Electrochem Solid-State Lett 7:A75–A77.
Niu J, Bao Y, Li Y, Chai Z (2013) Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO 2 -Sb electrodes. Chemosphere 92:1571–1577.
Romanov V, Whyard TC, Waltzer WC, Grollman AP, Rosenquist T (2015) Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation. Arch Toxicol 89:47–56.
Shankar A, Kongot M, Saini VK, Kumar A (2020) Removal of pentachlorophenol pesticide from aqueous solutions using modified chitosan. Arab J Chem 13:1821–1830.
Shi YJ, Huang YH, Huang CP (2017) Oxidation of ammonia in dilute aqueous solutions over graphite-supported α- and β-lead dioxide electrodes (PbO 2 @G). Electrochim Acta 257:444–454.
Shmychkova OB, Luk’yanenko TV, Amadelli R et al (2014) PbO 2 anodes modified by cerium ions. Prot Met Phys Chem Surf 50:493–498.
Shmychkova O, Luk’yanenko T, Yakubenko A, Amadelli R, Velichenko A (2015) Electrooxidation of some phenolic compounds at bi-doped PbO 2 . Appl Catal B Environ 162:346–351.
Sun HJ, Zhang JY, Wang Q et al (2019) Environmentally relevant concentrations of arsenite induces developmental toxicity and oxidative responses in the early life stage of zebrafish. Environ Pollut 254:113022–113026.
Thuan NT, Chang MB (2012) Investigation of the degradation of pentachlorophenol in sandy soil via low-temperature pyrolysis. J Hazard Mater 229–230:411–418.
Umemura T, Kai S, Hasegawa R et al (1999) Pentachlorophenol (PCP) produces liver oxidative stress and promotes but does not initiate hepatocarcinogenesis in B6C3F1 mice. Carcinogenesis 20:1115–1120.
Wang W, Wang S, Zhang J, Hu Z, Zhang X, Muñoz Sierra J (2016) Degradation kinetics of pentachlorophenol and changes in anaerobic microbial community with different dosing modes of co-substrate and zero-valent iron. Int Biodeterior Biodegradation 113:126–133.
Wang Z, Xu M, Wang F, Liang X, Wei Y, Hu Y, Zhu CG, Fang W (2017a) Preparation and characterization of a novel Ce doped PbO 2 electrode based on NiO modified Ti/TiO 2 NTs substrate for the electrocatalytic degradation of phenol wastewater. Electrochim Acta 247:535–547.
Wang C, Yin L, Xu Z, Niu J, Hou LA (2017b) Electrochemical degradation of enrofloxacin by lead dioxide anode: kinetics, mechanism and toxicity evaluation. Chem Eng J 326:911–920.
Wang H, Meng Z, Zhou L, Cao Z, Liao X, Ye R, Lu H (2019a) Effects of acetochlor on neurogenesis and behaviour in zebrafish at early developmental stages. Chemosphere 220:954–964.
Wang X, Wu Q, Ma H, Ma C, Yu Z, Fu Y, Dong X (2019b) Fabrication of PbO 2 tipped Co 3 O 4 nanowires for efficient photoelectrochemical decolorization of dye (reactive brilliant blue KN-R) wastewater. Sol Energ Mat Sol C 191:381–388.
Wang W, Duan X, Sui X, Wang Q, Xu F, Chang L (2020) Surface characterization and electrochemical properties of PbO 2 /SnO 2 composite anodes for electrocatalytic oxidation of m-nitrophenol. Electrochim Acta 335:135649–135662.
Xia Y, Bian X, Xia Y, Zhou W, Wang L, Fan S, Xiong P, Zhan T, Dai Q, Chen J (2020) Effect of indium doping on the PbO 2 electrode for the enhanced electrochemical oxidation of aspirin: An electrode comparative study. Sep Purif Technol 237:116321–116327.
Xu M, Mao Y, Song W, OuYang XM, Hu Y, Wei Y, Zhu CG, Fang W, Shao B, Lu R, Wang F (2018) Preparation and characterization of Fe-Ce co-doped Ti/TiO 2 NTs/PbO 2 nanocomposite electrodes for efficient electrocatalytic degradation of organic pollutants. J Electroanal Chem 823:193–202.
Yang H, Qi K, Gong L, Liu W, Zaman S, Guo X, Qiu Y, Xia BY (2018) Lead oxide enveloped in N-doped graphene oxide composites for enhanced high-rate partial-state-of-charge performance of lead-acid battery. ACS Sustain Chem Eng 6:11408–11413.
Yang Y, Cui L, Li M, Yao Y (2019) Electrochemical removal of metribuzin in aqueous solution by a novel PbO 2 /WO 3 composite anode: characterization, influencing parameters and degradation pathways. J Taiwan Inst Chem E 102:170–181.
Yao Y, Teng G, Yang Y, Huang C, Liu B, Guo L (2019a) Electrochemical oxidation of acetamiprid using Yb-doped PbO 2 electrodes: electrode characterization, influencing factors and degradation pathways. Sep Purif Technol 211:456–466.
Yao Y, Teng G, Yang Y, Ren B, Cui L (2019b) Electrochemical degradation of neutral red on PbO 2 /α-Al 2 O 3 composite electrodes: electrode characterization, byproducts and degradation mechanism. Sep Purif Technol 227:115684–115693.
Ye Z, Sirés I, Zhang H, Huang YH (2019) Mineralization of pentachlorophenol by ferrioxalate-assisted solar photo-Fenton process at mild pH. Chemosphere 217:475–482.
Zhang L, Hu C, Wang W, Ji F, Cui Y, Li M (2014) Acute toxicity of multi-walled carbon nanotubes, sodium pentachlorophenate, and their complex on earthworm Eisenia fetida. Ecotox Environ Safe 103:29–35.
Zhang W, Xie D, Li X, Ye W, Jiang X, Wang Y, Liang W (2018) Electrocatalytic removal of humic acid using cobalt-modified particle electrodes. Appl Catal A Gen 559:75–84.
Zhang Y, He P, Jia L, Li C, Liu H, Wang S, Zhou S, Dong F (2019a) Ti/PbO 2 -Sm 2 O 3 composite based electrode for highly efficient electrocatalytic degradation of alizarin yellow R. J Colloid Interf Sci 533:750–761.
Zhang X, Shao D, Lyu W, Tan G, Ren H (2019b) Utilizing discarded SiC heating rod to fabricate SiC/Sb-SnO 2 anode for electrochemical oxidation of wastewater. Chem Eng J 361:862–873.
Zhu LY, Santiago-Schuebel B, Xiao HX et al (2016) Electrochemical oxidation of fluoroquinolone antibiotics: mechanism, residual antibacterial activity and toxicity change. Water Res 102:52–62.
Zhuo Q, Xiang Q, Yi H, Zhang Z, Yang B, Cui K, Bing X, Xu Z, Liang X, Guo Q, Yang RB (2017) Electrochemical oxidation of PFOA in aqueous solution using highly hydrophobic modified PbO 2 electrodes. J Electroanal Chem 801:235–243.
Grant Information:
No. 51808256 National Natural Science Foundation of China; 51778268 National Natural Science Foundation of China
Contributed Indexing:
Keywords: Electrocatalytic oxidation; Hydrolysis; PCP-Na; PbO2; Toxicity
Substance Nomenclature:
0 (Oxides)
0 (Water Pollutants, Chemical)
D1JT611TNE (Titanium)
Entry Date(s):
Date Created: 20200802 Date Completed: 20201125 Latest Revision: 20210723
Update Code:
20240104
DOI:
10.1007/s11356-020-10289-y
PMID:
32737782
Czasopismo naukowe
This study aims at investigating the electrocatalytic oxidation of sodium pentachlorophenate (PCP-Na) using a novel nano-PbO 2 powder anode. The nano-PbO 2 powder (marked as HL-PbO 2 ) was prepared by a simple hydrolysis process, and hydrothermal treatment was followed to improve the activity of HL-PbO 2 . The HL-PbO 2 treated for 24 h by hydrothermal process (HL/HT-PbO 2 -24) was confirmed to possess higher crystallinity, higher oxygen evolution potential, and more active sites, resulting in stronger OH radical generation capacity and higher electrochemical activity. Compared with conventional electrodeposited PbO 2 (ED-PbO 2 ) anode, the HL/HT-PbO 2 -24 anode showed higher PCP-Na degradation rate. Under the same operating conditions, the mineralization current efficiency at HL/HT-PbO 2 -24 was 2.7 times than that at ED-PbO 2 . Five intermediates were detected in PCP-Na degradation solution and possible degradation mechanism of PCP-Na was discussed. In addition, the acute toxicity of PCP-Na degradation solution to zebrafish embryos and the oxidative stress induced in zebrafish embryos/larvae were studied to evaluate the ecological security of electrocatalytic oxidation of PCP-Na.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies