Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Quantitative proton radiation therapy dosimetry using the storage phosphor europium-doped potassium chloride.

Tytuł:
Quantitative proton radiation therapy dosimetry using the storage phosphor europium-doped potassium chloride.
Autorzy:
Setianegara J; Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA.; Department of Physics, Washington University in St. Louis, St. Louis, MO, 63110, USA.
Mazur TR; Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
Maraghechi B; Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
Darafsheh A; Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
Yang D; Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
Zhao T; Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
Li HH; Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA.; Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA.
Źródło:
Medical physics [Med Phys] 2020 Oct; Vol. 47 (10), pp. 5287-5300. Date of Electronic Publication: 2020 Aug 16.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2017- : Hoboken, NJ : John Wiley and Sons, Inc.
Original Publication: Lancaster, Pa., Published for the American Assn. of Physicists in Medicine by the American Institute of Physics.
MeSH Terms:
Europium*
Proton Therapy*
Potassium Chloride ; Protons ; Radiometry
References:
Newhauser WD, Zhang R. The physics of proton therapy. Phys Med Biol. 2015;60:R155-R209.
Blanchard P, Garden AS, Gunn GB, et al Intensity modulated proton beam therapy (IMPT) versus Intensity modulated photon therapy (IMRT) for oropharynx cancer patients - a case matched analysis. Radiother Oncol. 2016;120:48-55.
McKeever MR, Sio TT, Gunn GB, et al Reduced acute toxicity and improved efficacy from intensity-modulated proton therapy (IMPT) for the management of head and neck cancer. Chin Clin Oncol. 2016;5(4):54.
Mizumoto M, Okumura T, Hashimoto T, et al Proton beam therapy for hepatocellular carcinoma: a comparison of three treatment protocols. Int J Radiat Oncol Biol Phys. 2011;81:1039-1045.
Vargas C, Fryer A, Mahajan C, et al Dose-volume comparison of proton therapy and intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2008;70:744-751.
Bradley JA, Dagon R, Rutenberg M, Morris CG, Li Z, Mendenhall NP. Initial report of a prospective dosimetric and clinical feasibility trial demonstrates the potential of protons to increase the therapeutic ratio in breast cancer compared with photons. Int J Radiat Oncol Biol Phys. 2016;95:411-421.
Liu H, Chang JY. Proton therapy in clinical practice. Chin J Cancer. 2011;30:315-326.
Moreno AC, Frank SJ, Garden AS, et al Intensity modulated proton therapy (IMPT) - the future of IMRT for head and neck cancer. Oral Oncol. 2019;88:66-74.
Luhr A, Cv Neubeck, Krause M, Troost EGC. Relative biological effectiveness in proton beam therapy - current knowledge and future challenges. Clin Translat Radiat Oncol. 2018;9:35-41.
Levitt SH, Purdy JA, Perez CA, Poortmans P. Technical Basis of Radiation Therapy. New York, NY: Springer; 2012.
Brenner DJ, Hall EJ. Secondary neutrons in clinical proton radiotherapy: a charged issue. Radiother Oncol. 2008;86:165-170.
Schneider U, Agostwo S, Pedroni E, Besserer J. Secondary neutron dose during proton therapy using spot scanning. Int J Radiat Oncol Biol Phys. 2002;53:244-251.
Kase Y, Yamashita H, Fuji H, et al A treatment planning comparison of passive-scattering and intensity-modulated proton therapy for typical tumor sites. J Radiat Res. 2012;53:272-280.
Zhao L, Das IJ, Zhao Q, Thomas A, Adamovics J, Oldman M. Determination of the depth dose distribution of proton beam using PRESAGE dosimeter. J Phys Conf Ser. 2010;250:012035.
Robertson D, Mirkovic D, Sahoo N, Beddar S. Quenching correction for volumetric scintillation dosimetry of proton beams. Phys Med Biol. 2013;58:261-275.
Archambault L, Poenisch F, Sahoo N, Robertson D. Verification of proton range, position, and intensity in IMPT with a 3D liquid scintillator detector system. Med Phys. 2012;39:1239-1246.
Darne CD, Alsanea F, Robertson DG, Sahoo N, Beddar S. Performance characterization of a 3D liquid scintillation detector for discrete spot scanning proton beam systems. Phys Med Biol. 2018;62:5652-5667.
Heufelder J, Stiefel S, Phaender M, Ludermann L, Grebe G, Hesse J. Use of BANG polymer gel for dose measurements in a 68 MeV proton beam. Med Phys. 2003;30:1235-1240.
Zhu XR, Li Y, Mackin D, et al Towards effective and efficient patient-specific quality assurance for spot scanning proton therapy. Cancers. 2015;7:631-647.
Jang KW, Yoo WJ, Shin SH, Shin D, Lee B. Fiber-optic Cerenkov radiation sensor for proton therapy dosimetry. Opt Expr. 2012;20:13907-13914.
Khachonkham S, Dreindl R, Heilemann G, et al Characteristic of EBT-XD and EBT3 radiochromic film dosimetry for photon and proton beams. Phys Med Biol. 2017;63:065007.
Yeo IJ, Teran A, Ghebremedhin A, Johnson M, Patyal B. Radiographic film dosimetry of proton beams for depth-dose constancy check and beam profile measurement. J Appl Clin Med Phys. 2015;16:318-328.
Paganetti H. Proton Therapy Physics, 1st edn. Boca Raton, FL: CRC Press; 2012.
Li HH, Driewer JP, Han Z, Low DA, Yang D, Xiao Z. Two-dimensional high spatial-resolution dosimeter using europium doped potassium chloride: a feasibility study. Phys Med Biol. 2014;59:1899-1909.
Leblans P, Vandenbroucke D, Willems P. Storage phosphors for medical imaging. Materials (Basel). 2011;4:1034-1086.
Implementation of the International Code of Practice on Dosimetry in Radiotherapy (TRS 398): Review of Testing Results. Vienna: International Atomic Energy Agency; 2010.
Mason JD, Cone MT, Donelon M, Wigle JC, Noojin GD, Fry ES. Robust commercial diffuse reflector for UV-VIS-NIR applications. Appl Opt. 2015;54:7542-7545.
Han Z, Driewer JP, Zheng Y, Low DA, Li HH. Quantitative megavoltage radiation therapy dosimetry using the storage phosphor KCl:Eu2+. Med Phys. 2009;36:3748-3757.
Attix FH. Introduction to Radiological Physics and Radiation Dosimetry. New York, NY: John Wiley & Sons; 1986.
Ziegler JF. Stopping of energetic light ions in elemental matter. J Appl Phys. 1999;85:1249.
Sternheimer RM, Seltzer SM, Berger MJ. Density effect for the ionization loss of charged particles in various substances. Phys Rev B. 1982;26:6067.
Sternheimer RM, Seltzer SM, Berger MJ. Erratum: density effect for the ionization loss of charged particles in various substances. Phys Rev B. 1982;27:6971.
Berger MJ, Inokuti M, Andersen HH, et al Stopping powers and ranges for protons and alpha particles (ICRU Report 49). J Int Comm Radiat Units Meas. 1993;25:5.
Berger MJ, Coursey JS, Zucker MA, Chang J. ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (version 1.2.3). Gaithersburg, MD: National Institute of Standards and Technology; 2005.
Kerns JR, Kry SF, Sahoo N. Characteristics of optically stimulated luminescence dosimeters in the spread-out Bragg peak region of clinical proton beams. Med Phys. 2012;39:1854-1863.
Bortfeld T, Schlegel W. An analytical approximation of depth-dose distributions for therapeutic proton beams. Phys Med Biol. 1996;41:1331-1340.
Lee M, Nahum AE, Webb S. An empirical method to build up a model of proton dose distribution for a radiotherapy treatment-planning package. Phys Med Biol. 1993;38:989-998.
Janni JF. Proton range-energy tables, 1 keV-10 GeV: energy loss, range, path length, time-of-flight, straggling, multiple scattering, and nuclear interaction probability. Atom Data Nucl Data Tables. 1982;27:147-339.
Jette D, Chen W. Creating a spread-out Bragg peak in proton beams. Phys Med Biol. 2011;56:N131-N138.
Wilkens JJ, Oelfke U. Analytical linear energy transfer calculations for proton therapy. Med Phys. 2003;30:806-815.
Hubbell JH, Seltzer SM. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.4). Gaithersburg, MD: National Institute of Standards and Technology; 2004.
Janssens A, Eggermont G, Jacobs R, Thielens G. Spectrum perturbation and energy deposition models for stopping power ratio calculations in general cavity theory. Phys Med Biol. 1974;19:619-630.
Schlegel WC, Bortfeld T, Grosu A-L. New Technologies in Radiation Oncology. Verlag, Heidelberg: Springer; 2006.
Orfanidis SJ. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice Hall; 1996.
Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika. 1970;57:97-109.
Granville DA, Sahoo N, Sawakuchi GO. Linear energy transfer dependence of Al2O3: C optically stimulated luminescence detectors exposed to therapeutic proton beams. Radiat Meas. 2014;71:69-73.
Pooley D. The saturation of F-center production in alkali halides under proton irradiation. Br J Appl Phys. 1966;17:855-861.
Rabin H, Klick CC. Formation of F centers at low and room temperatures. Phys Rev. 1960;117:1005-1010.
Dorenbos P. Valence stability of lanthanide ions in inorganic compounds. Chem Mater. 2005;17:6452-6456.
Thompson PE, Murray RB. Ion bombardment of Alkali Halides, I. Range and damage profiles of protons in KCl. Radiat Effects. 1975;25:127-132.
Luntz M, Thompson PE, Murray RB, White DJ. Ion bombardment of alkali halides, III: track-effect analysis of measured damage profiles in KCl. Radiat Effects. 1977;31:89-99.
Loman JM, Murray RB. Ion bombardment of alkali halides, V: particle track effects. Radiat Effects. 1980;52:1-8.
Paganetti H, Blakely E, Carabe-Fernandez A, et al Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy. Med Phys. 2019;46:e53-e78.
Giantsoudi D, Grassberger C, Craft D, Niemierko A, Trofimov A, Paganetti H. Linear energy transfer-guided optimization in intensity modulated proton therapy: feasibility study and clinical potential. Int J Radiat Oncol Biol Phys. 2013;87:216-222.
Hughes AE, Pooley D. Factors affecting the formation of U centers by proton implantation of alkali halides. J Phys C. 1973;6:2094-2104.
Ozawa K, Fujimoto F, Komaki K, Mannami M, Sakurai T. Effect of channeling on the lattice defects produced by proton irradiation in alkali halide crystals. Phys Status Solidi A. 1972;9:323-332.
Hobbs LW, Hughes AE, Pooley D. A study of interstitial clusters in irradiated alkali halides using direct electron microscopy. Proc R Soc A. 1973;332:167-185.
Bergstrand J, Liu Q, Huang B, et al On the decay time of upconversion luminescence. Nanoscale. 2019;11:4959-4969.
Grant Information:
R41CA202980 HHS | NIH | National Cancer Institute (NCI)
Contributed Indexing:
Keywords: proton therapy dosimetry; radiation therapy dosimetry; storage phosphor; two-dimensional dosimeter
Substance Nomenclature:
0 (Protons)
444W947O8O (Europium)
660YQ98I10 (Potassium Chloride)
Entry Date(s):
Date Created: 20200805 Date Completed: 20210514 Latest Revision: 20210514
Update Code:
20240105
DOI:
10.1002/mp.14423
PMID:
32750155
Czasopismo naukowe
Purpose: To (a) characterize the fundamental optical and dosimetric properties of the storage phosphor europium-doped potassium chloride for quantitative proton dosimetry, and (b) investigate if its dose radiation response can be described by an analytic radiation transport model.
Methods: Cylindrical KCl:Eu 2+ dosimeters with dimensions of 6 mm diameter and 1 mm thickness were fabricated in-house. The dosimeters were irradiated using both a Mevion S250 passive scattering proton therapy system and a Varian Clinac iX linear accelerator. Photostimulated luminescence (PSL) emission spectra, excitation spectra, and luminescence lifetimes were measured for both proton and photon irradiations. Dosimetric properties including radiation hardness, dose linearity, signal stabilization, dose rate sensitivity, and energy dependence were studied using a laboratory optical reader after irradiations. The dosimeters were modeled using physical quantities including mass stopping powers in the storage phosphor and water for a given proton beam, and mass energy absorption coefficients and massing stopping powers in detector and water for a given photon beam.
Results: KCl:Eu 2+ exhibited optical emission and stimulation peaks at 421 and 560 nm, respectively, for both proton and photon irradiations, enabling postirradiation readouts using a visible light source while detecting the PSL using a photomultiplier tube. KCl:Eu 2+ showed a linear response from 0 to 8 Gy absorbed dose-to-water, a large dynamic range up to 60 Gy, dose-rate independence measured from 83 to 500 MU/min, and a PSL lifetime of <5 ms that is sufficiently short for supporting rapid scanning in a two-dimensional geometry. KCl:Eu 2+ was highly reusable with only a slight signal decrease of ~3% at accumulated doses over 100 Gy, which could be managed by a periodic recalibration. The detected PSL signal strength of the dosimeter in the proton field had been calculated accurately to a maximum discrepancy of 2% using known physical quantities along with its prior signal strength as measured in a photon field at the same dose-to-water. This discrepancy might be attributed to an under-response due to linear energy transfer (LET) effect. However, comparisons of depth-dose measurements in a spread-out Bragg peak (SOBP) field with a parallel-plate ionization chamber showed no clear evidence of LET effects. Furthermore, range measurements agreed with ionization chamber measurements to within 1 mm.
Conclusions: KCl:Eu 2+ showed linear response over a large dynamic range for proton irradiations and reliably reproduced SOBP measurements as measured by ionization chambers. Its relatively low atomic number of 18 and near LET independence make it suited for quantitative proton dosimetry. In addition, its high radiation hardness means that it can be reused numerous times. Any potential measurement artifacts encountered in complex irradiation conditions should be able to be corrected for using known physical quantities.
(© 2020 American Association of Physicists in Medicine.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies