Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Reduced Mrp2 surface availability as PI3Kγ-mediated hepatocytic dysfunction reflecting a hallmark of cholestasis in sepsis.

Tytuł:
Reduced Mrp2 surface availability as PI3Kγ-mediated hepatocytic dysfunction reflecting a hallmark of cholestasis in sepsis.
Autorzy:
Beer AJ; Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, 07743, Jena, Germany.
Hertz D; Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, 07743, Jena, Germany.; Research Center Borstel, Leibniz Lung Center, Priority Area Infections, Parkallee 1-40, 23845, Borstel, Germany.
Seemann E; Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, 07743, Jena, Germany.
Beretta M; Center for Sepsis Control and Care and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Erlanger Allee 101, 07747, Jena, Germany.; Institute of Molecular Cell Biology, CMB-Center for Molecular Biomedicine, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, 07745, Jena, Germany.; School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney, Australia.
Westermann M; Electron Microscopy Center, Jena University Hospital, Friedrich Schiller University Jena, Ziegelmühlenweg 1, 07743, Jena, Germany.
Bauer R; Institute of Molecular Cell Biology, CMB-Center for Molecular Biomedicine, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, 07745, Jena, Germany.
Bauer M; Center for Sepsis Control and Care and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Erlanger Allee 101, 07747, Jena, Germany.
Kessels MM; Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, 07743, Jena, Germany. .
Qualmann B; Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, 07743, Jena, Germany. .
Źródło:
Scientific reports [Sci Rep] 2020 Aug 04; Vol. 10 (1), pp. 13110. Date of Electronic Publication: 2020 Aug 04.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Chemokines, CC/*metabolism
Cholestasis/*complications
Cholestasis/*pathology
Macrophage Inflammatory Proteins/*metabolism
Phosphatidylinositol 3-Kinases/*metabolism
Sepsis/*complications
Animals ; Cell Line ; Cell Membrane/metabolism ; Cholestasis/metabolism ; Gene Knockout Techniques ; Mice ; Phosphatidylinositol 3-Kinases/deficiency ; Phosphatidylinositol 3-Kinases/genetics ; Proto-Oncogene Proteins c-akt/metabolism ; Signal Transduction
References:
Martin, G. S., Mannino, D. M., Eaton, S. & Moss, M. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546–1554 (2003). (PMID: 12700374)
Dellinger, R. P. et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock: 2012. Crit. Care Med. 41, 580–637 (2013). (PMID: 23353941)
Woznica, E. A., Inglot, M., Woznica, R. K. & Lysenko, L. Liver dysfunction in sepsis. Adv. Clin. Exp. Med. 27, 547–551 (2018). (PMID: 29558045)
Nesseler, N. et al. Clinical review: The liver in sepsis. Crit. Care 16, 235 (2012). (PMID: 231345973682239)
Geier, A., Fickert, P. & Trauner, M. Mechanisms of disease: Mechanisms and clinical implications of cholestasis in sepsis. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 574–585 (2006). (PMID: 17008927)
Trauner, M., Meier, P. J. & Boyer, J. L. Molecular pathogenesis of cholestasis. N. Engl. J. Med. 339, 1217–1227 (1998). (PMID: 9780343)
Paulusma, C. C. et al. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science 271, 1126–1128 (1996). (PMID: 8599091)
Recknagel, P. et al. Liver dysfunction and phosphatidylinositol-3-kinase signalling in early sepsis: Experimental studies in rodent models of peritonitis. PLoS Med. 9, e1001338 (2012). (PMID: 231527223496669)
Martin, E. L. et al. Phosphoinositide-3 kinase γ activity contributes to sepsis and organ damage by altering neutrophil recruitment. Am. J. Respir. Crit. Care Med. 182, 762–773 (2010). (PMID: 20508212)
Lopez-Ilasaca, M., Crespo, P., Pellici, P. G., Gutkind, J. S. & Wetzker, R. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase γ. Science 275, 394–397 (1997). (PMID: 8994038)
Stoyanov, B. et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269, 690–693 (1995). (PMID: 7624799)
Jean, S. & Kiger, A. A. Classes of phosphoinositide 3-kinases at a glance. J. Cell Sci. 127, 923–928 (2014). (PMID: 245874883937771)
Hohenester, S. et al. Phosphatidylinositol-3-kinase p110γ contributes to bile salt-induced apoptosis in primary rat hepatocytes and human hepatoma cells. J. Hepatol. 53, 918–926 (2010). (PMID: 206750062949543)
Auger, K. R., Carpenter, C. L., Cantley, L. C. & Varticovski, L. Phosphatidylinositol 3-kinase and its novel product, phosphatidylinositol 3-phosphate, are present in Saccharomyces cerevisiae. J. Biol. Chem. 264, 20181–20184 (1989). (PMID: 2555343)
Chan, T. O., Rittenhouse, S. E. & Tsichlis, P. N. AKT/PKB and other D3 phosphoinositide-regulated kinases: Kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem. 68, 965–1014 (1999). (PMID: 10872470)
Toker, A. & Cantley, L. C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387, 673–676 (1997). (PMID: 9192891)
Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287, 1049–1053 (2000). (PMID: 10669418)
Patrucco, E. et al. PI3Kγ modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118, 375–387 (2004). (PMID: 15294162)
Camps, M. et al. Blockade of PI3Kγ suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat. Med. 11, 936–943 (2005). (PMID: 16127437)
Albelda, S. M., Muller, W. A., Buck, C. A. & Newman, P. J. Molecular and cellular properties of PECAM-1 (endoCAM/CD31): A novel vascular cell–cell adhesion molecule. J. Cell. Biol. 114, 1059–1068 (1991). (PMID: 1874786)
Hawkins, P. T., Stephens, L. R., Suire, S. & Wilson, M. PI3K signaling in neutrophils. Curr. Top. Microbiol. Immunol. 346, 183–202 (2010). (PMID: 20473789)
Beretta, M., Bauer, M. & Hirsch, E. PI3K signaling in the pathogenesis of obesity: The cause and the cure. Adv. Biol. Regul. 58, 1–15 (2015). (PMID: 25512233)
Raetz, C. R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002). (PMID: 12045108)
Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000). (PMID: 10963608)
Stephens, L., Jackson, T. & Hawkins, P. T. Synthesis of phosphatidylinositol 3,4,5-trisphosphate in permeabilized neutrophils regulated by receptors and G-proteins. J. Biol. Chem. 268, 17162–17172 (1993). (PMID: 8394332)
Coffer, P. J. et al. Analysis of signal transduction pathways in human eosinophils activated by chemoattractants and the T-helper 2-derived cytokines interleukin-4 and interleukin-5. Blood 91, 2547–2557 (1998). (PMID: 9516156)
Rauch, J., Volinsky, N., Romano, D. & Kolch, W. The secret life of kinases: Functions beyond catalysis. Cell Commun. Signal 9, 23 (2011). (PMID: 220352263215182)
Goodenough, D. A. & Revel, J. P. A fine structural analysis of intercellular junctions in the mouse liver. J. Cell. Biol. 45, 272–290 (1970). (PMID: 41051122107902)
Rost, D., Kartenbeck, J. & Keppler, D. Changes in the localization of the rat canalicular conjugate export pump Mrp2 in phalloidin-induced cholestasis. Hepatology 29, 814–821 (1999). (PMID: 10051484)
Kikuchi, S. et al. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat. Genet. 31, 320–325 (2002). (PMID: 12068294)
Koch, D., Westermann, M., Kessels, M. M. & Qualmann, B. Ultrastructural freeze-fracture immunolabeling identifies plasma membrane-localized syndapin II as a crucial factor in shaping caveolae. Histochem. Cell Biol. 138, 215–230 (2012). (PMID: 22718246)
Schneider, K. et al. ProSAP1 and membrane nanodomain-associated syndapin I promote postsynapse formation and function. J. Cell Biol. 205, 197–215 (2014). (PMID: 247515384003247)
Zobel, T. et al. Cooperative functions of the two F-BAR proteins Cip4 and Nostrin in the regulation of E-cadherin in epithelial morphogenesis. J. Cell Sci. 128, 499–515 (2015). (PMID: 25413347)
Seemann, E. et al. Deciphering caveolar functions by syndapin III KO-mediated impairment of caveolar invagination. Elife 6, e29854 (2017). (PMID: 292029285716666)
Wolf, D. et al. Ankyrin repeat-containing N-Ank proteins shape cellular membranes. Nat. Cell Biol. 21, 1191–1205 (2019). (PMID: 31548610)
Gonzalez-Mariscal, L., Tapia, R. & Chamorro, D. Crosstalk of tight junction components with signaling pathways. Biochim. Biophys. Acta 1778, 729–756 (2008). (PMID: 17950242)
Khan, N., Binder, L., Pantakani, D. V. K. & Asif, A. R. MPA modulates tight junctions’ permeability via midkine/PI3K pathway in Caco-2 cells: A possible mechanism of leak-flux diarrhea in organ transplanted patients. Front. Physiol. 8, 438 (2017). (PMID: 286947835483464)
Sheth, P., Basuroy, S., Li, C., Naren, A. P. & Rao, R. K. Role of phosphatidylinositol 3-kinase in oxidative stress-induced disruption of tight junctions. J. Biol. Chem. 278, 49239–49245 (2003). (PMID: 14500730)
Lin, N., Xu, L. F. & Sun, M. The protective effect of trefoil factor 3 on the intestinal tight junction barrier is mediated by toll-like receptor 2 via a PI3K/Akt dependent mechanism. Biochem. Biophys. Res. Commun. 440, 143–149 (2013). (PMID: 24051092)
Yu, C. et al. The effects of glucagon-like peptide-2 on the tight junction and barrier function in IPEC-J2 cells through phosphatidylinositol 3-kinase-protein kinase B-mammalian target of rapamycin signaling pathway. Asian Aust. J. Anim. Sci. 29, 731–738 (2016).
Shao, Y. et al. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells. J. Nutr. Biochem. 43, 18–26 (2017). (PMID: 28193579)
Lien, E. C., Dibble, C. C. & Toker, A. PI3K signaling in cancer: Beyond AKT. Curr. Opin. Cell Biol. 45, 62–71 (2017). (PMID: 283431265482768)
Warfel, N. A., Niederst, M. & Newton, A. C. Disruption of the interface between the pleckstrin homology (PH) and kinase domains of Akt protein is sufficient for hydrophobic motif site phosphorylation in the absence of mTORC2. J. Biol. Chem. 286, 39122–39129 (2011). (PMID: 219086133234737)
Qian, Y. et al. PI3K induced actin filament remodeling through Akt and p70S6K1: Implication of essential role in cell migration. Am. J. Physiol. Cell Physiol. 286, C153-163 (2004). (PMID: 12967912)
van den Bogaart, G. et al. Membrane protein sequestering by ionic protein–lipid interactions. Nature 479, 552–555 (2011). (PMID: 220202843409895)
Fievet, B. T. et al. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J. Cell Biol. 164, 653–659 (2004). (PMID: 149932322172172)
Pelaseyed, T. et al. Ezrin activation by LOK phosphorylation involves a PIP 2 -dependent wedge mechanism. Elife 6, e22759 (2017). (PMID: 284305765400502)
Saotome, I., Curto, M. & McClatchey, A. I. Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev. Cell 6, 855–864 (2004). (PMID: 15177033)
Mooseker, M. S. Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu. Rev. Cell Biol. 1, 209–241 (1985). (PMID: 3916317)
Rzadzinska, A. K., Schneider, M. E., Davies, C., Riordan, G. P. & Kachar, B. An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J. Cell Biol. 164, 887–897 (2004). (PMID: 150240342172292)
Williams, M. & Mayhew, T. M. Responses of enterocyte microvilli in experimental diabetes to insulin and an aldose reductase inhibitor (ponalrestat). Virchows Arch. B Cell. Pathol. Incl. Mol. Pathol. 62, 385–389 (1992). (PMID: 1360726)
Smit, J. J. et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75, 451–462 (1993). (PMID: 8106172)
Trauner, M. et al. The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology 113, 255–264 (1997). (PMID: 9207286)
Kubitz, R., Wettstein, M., Warskulat, U. & Haussinger, D. Regulation of the multidrug resistance protein 2 in the rat liver by lipopolysaccharide and dexamethasone. Gastroenterology 116, 401–410 (1999). (PMID: 9922322)
Paulusma, C. C. et al. Zonal down-regulation and redistribution of the multidrug resistance protein 2 during bile duct ligation in rat liver. Hepatology 31, 684–693 (2000). (PMID: 10706559)
Beuers, U. et al. Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C-dependent mechanisms in cholestatic rat liver. Hepatology 33, 1206–1216 (2001). (PMID: 11343250)
Mottino, A. D. et al. Altered localization and activity of canalicular Mrp2 in estradiol-17β-D-glucuronide-induced cholestasis. Hepatology 35, 1409–1419 (2002). (PMID: 12029626)
Kojima, H. et al. The role of radixin in altered localization of canalicular conjugate export pump Mrp2 in cholestatic rat liver. Hepatol. Res. 38, 202–210 (2008). (PMID: 17681005)
Saeki, J., Sekine, S. & Horie, T. LPS-induced dissociation of multidrug resistance-associated protein 2 (Mrp2) and radixin is associated with Mrp2 selective internalization in rats. Biochem. Pharmacol. 81, 178–184 (2011). (PMID: 20868650)
Schaarschmidt, B. et al. Molecular signatures of liver dysfunction are distinct in fungal and bacterial infections in mice. Theranostics 8, 3766–3780 (2018). (PMID: 300832586071540)
Brunkhorst, F. M. et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N. Engl. J. Med. 358, 125–139 (2008). (PMID: 18184958)
Amieva, M. R., Wilgenbus, K. K. & Furthmayr, H. Radixin is a component of hepatocyte microvilli in situ. Exp. Cell Res. 210, 140–144 (1994). (PMID: 8269991)
Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol. 140, 647–657 (1998). (PMID: 94563242140160)
Suda, J., Zhu, L. & Karvar, S. Phosphorylation of radixin regulates cell polarity and Mrp-2 distribution in hepatocytes. Am. J. Physiol. Cell Physiol. 300, C416-424 (2011). (PMID: 21160029)
Gonnert, F. A. et al. Hepatic Fibrosis in a long-term murine model of sepsis. Shock 37, 399–407 (2012). (PMID: 22266973)
Goncalves, L. A., Vigario, A. M. & Penha-Goncalves, C. Improved isolation of murine hepatocytes for in vitro malaria liver stage studies. Malar. J. 6, 169 (2007). (PMID: 180960712244635)
Braccini, L. et al. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat. Commun. 6, 7400 (2015). (PMID: 261000754479417)
Schwintzer, L. et al. The functions of the actin nucleator Cobl in cellular morphogenesis critically depend on syndapin I. EMBO J. 30, 3147–3159 (2011). (PMID: 217252803160182)
Julio, G., Merindano, M. D., Canals, M. & Ralló, M. Image processing techniques to quantify microprojections on outer corneal epithelial cells. J. Anat. 212, 879–886 (2008). (PMID: 185105132423409)
Beer, A. J., González Delgado, J., Steiniger, F., Qualmann, B., & Kessels, M. M. The actin nucleator Cobl organises the terminal web of enterocytes. Sci. Rep. 10, 11156 (2020). (PMID: 326364037341751)
Substance Nomenclature:
0 (Ccl9 protein, mouse)
0 (Chemokines, CC)
0 (Macrophage Inflammatory Proteins)
EC 2.7.11.1 (Proto-Oncogene Proteins c-akt)
Entry Date(s):
Date Created: 20200806 Date Completed: 20201214 Latest Revision: 20210804
Update Code:
20240105
PubMed Central ID:
PMC7403153
DOI:
10.1038/s41598-020-69901-3
PMID:
32753644
Czasopismo naukowe
Sepsis-associated liver dysfunction manifesting as cholestasis is common during multiple organ failure. Three hepatocytic dysfunctions are considered as major hallmarks of cholestasis in sepsis: impairments of microvilli covering canalicular membranes, disruptions of tight junctions sealing bile-collecting canaliculae and disruptions of Mrp2-mediated hepatobiliary transport. PI3Kγ loss-of-function was suggested as beneficial in early sepsis. Yet, the PI3Kγ-regulated cellular processes in hepatocytes remained largely unclear. We analysed all three sepsis hallmarks for responsiveness to massive PI3K/Akt signalling and PI3Kγ loss-of-function, respectively. Surprisingly, neither microvilli nor tight junctions were strongly modulated, as shown by electron microscopical studies of mouse liver samples. Instead, quantitative electron microscopy proved that solely Mrp2 surface availability, i.e. the third hallmark, responded strongly to PI3K/Akt signalling. Mrp2 plasma membrane levels were massively reduced upon PI3K/Akt signalling. Importantly, Mrp2 levels at the plasma membrane of PI3Kγ KO hepatocytes remained unaffected upon PI3K/Akt signalling stimulation. The effect explicitly relied on PI3Kγ's enzymatic ability, as shown by PI3Kγ kinase-dead mice. Keeping the surface availability of the biliary transporter Mrp2 therefore is a cell biological process that may underlie the observation that PI3Kγ loss-of-function protects from hepatic excretory dysfunction during early sepsis and Mrp2 should thus take center stage in pharmacological interventions.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies