Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Effects of tourmaline catalyzed Fenton-like combined with bioremediation on the migration of PBDEs in soil-plant systems: Soil properties and physiological response of lettuce and selective uptake of PBDEs.

Tytuł:
Effects of tourmaline catalyzed Fenton-like combined with bioremediation on the migration of PBDEs in soil-plant systems: Soil properties and physiological response of lettuce and selective uptake of PBDEs.
Autorzy:
Jian H; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China.
Gao Y; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China.
Yang F; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China.
Li J; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China.
Zhang Q; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China.
Wang C; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China. Electronic address: .
Sun H; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China.
Źródło:
Chemosphere [Chemosphere] 2020 Dec; Vol. 260, pp. 127668. Date of Electronic Publication: 2020 Jul 13.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Oxford : Elsevier Science Ltd
Original Publication: Oxford, New York, : Pergamon Press.
MeSH Terms:
Biodegradation, Environmental*
Halogenated Diphenyl Ethers/*metabolism
Silicates/*chemistry
Soil Pollutants/*metabolism
Catalysis ; Halogenated Diphenyl Ethers/analysis ; Lactuca ; Minerals ; Phanerochaete ; Plant Roots/chemistry ; Polybrominated Biphenyls ; Rhizosphere ; Soil ; Soil Pollutants/analysis
Contributed Indexing:
Keywords: Lettuce; P. chrysosporium; PBDEs; Soil; Tourmaline Fenton-like reaction
Substance Nomenclature:
0 (2,2',4,4',5-brominated diphenyl ether)
0 (Halogenated Diphenyl Ethers)
0 (Minerals)
0 (Polybrominated Biphenyls)
0 (Silicates)
0 (Soil)
0 (Soil Pollutants)
0 (pentabrominated diphenyl ether 100)
0 (tourmaline)
Entry Date(s):
Date Created: 20200808 Date Completed: 20201007 Latest Revision: 20240109
Update Code:
20240109
DOI:
10.1016/j.chemosphere.2020.127668
PMID:
32758779
Czasopismo naukowe
A series of pollutants can be removed from soil using a Fenton-like oxidation and biological treatment. As a natural mineral, tourmaline has been used for as a material of Fenton-like reaction. In the present study, the risks of remediation technology tourmaline catalyzed Fenton-like reaction (TCFR) combined with Phanerochaete chrysosporium (TCFR + P) were assessed through measuring soil properties, physiological response of plant, and PBDEs migration from soil to plant. Batch pot experiments showed that the silicon contents, specific surface area and soil pore size of soil in TCFR and 5%TCFR + P groups increased obviously. TCFR and TCFR + P treatments promoted the lettuce growth compared to control. Moreover, chlorophyll content of lettuce in 2%TCFR + P and 5%TCFR + P group increased by 46.74% and 44.57% than that in the CK, respectively. The treatment of 2%TCFR decreased the total concentration of PBDEs in rhizosphere soil and non-rhizosphere soil by 52.0.2% and 64.17%, respectively, after 60 days compared to the soil of CK, and did not prompt the uptake of lower-brominated PBDEs by lettuce. TCFR and TCFR + P can alter the migration of BDE isomers from soil to plant, the ratio of BDE99/BDE100 in lettuce shoots decreased slightly. BDE-99/BDE-100 ratios in the shoots were lower than those in the roots, while BDE153/BDE154 ratios were higher than 1.0 and ratios in shoots were higher than those in roots. Therefore, our findings illustrated that the TCFR could be applied to remediate the agricultural soil, considering the appropriate doses of tourmaline.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2020. Published by Elsevier Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies