Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Drier tropical and subtropical Southern Hemisphere in the mid-Pliocene Warm Period.

Tytuł:
Drier tropical and subtropical Southern Hemisphere in the mid-Pliocene Warm Period.
Autorzy:
Pontes GM; Oceanographic Institute, University of São Paulo, São Paulo, Brazil. .; Climate Change Research Centre, The University of New South Wales, Sydney, Australia. .
Wainer I; Oceanographic Institute, University of São Paulo, São Paulo, Brazil.
Taschetto AS; Climate Change Research Centre, The University of New South Wales, Sydney, Australia.; ARC Centre of Excellence for Climate Extremes, The University of New South Wales, Sydney, Australia.
Sen Gupta A; Climate Change Research Centre, The University of New South Wales, Sydney, Australia.; ARC Centre of Excellence for Climate Extremes, The University of New South Wales, Sydney, Australia.
Abe-Ouchi A; Centre for Earth System Dynamics, Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan.
Brady EC; National Center for Atmospheric Research, Boulder, USA.
Chan WL; Centre for Earth System Dynamics, Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan.
Chandan D; Department of Physics, University of Toronto, Toronto, Canada.
Contoux C; Laboratoire des Sciences du Climat et de l'Environnement, Université Paris-Saclay, 91191, Gif-sur-Yvette, France.
Feng R; National Center for Atmospheric Research, Boulder, USA.
Hunter SJ; School of Earth and Environment, University of Leeds, Leeds, UK.
Kame Y; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
Lohmann G; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
Otto-Bliesner BL; National Center for Atmospheric Research, Boulder, USA.
Peltier WR; Department of Physics, University of Toronto, Toronto, Canada.
Stepanek C; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
Tindall J; School of Earth and Environment, University of Leeds, Leeds, UK.
Tan N; Laboratoire des Sciences du Climat et de l'Environnement, Université Paris-Saclay, 91191, Gif-sur-Yvette, France.; Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.
Zhang Q; Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.
Zhang Z; Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.; Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.; NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway.
Źródło:
Scientific reports [Sci Rep] 2020 Aug 10; Vol. 10 (1), pp. 13458. Date of Electronic Publication: 2020 Aug 10.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
References:
Dowsett, H. et al. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Clim. Past12, 1519–1538 (2016).
Hill, D. J., Haywood, A. M., Hindmarsh, R. C. A. & Valdes, P. J. Characterising ice sheets during the mid Pliocene: evidence from data and models. Deep time Perspect. Clim. Chang. Marrying Signal Comput. Model. Biol. Proxies 517–538 (2007).
Koenig, S. J. et al. Ice sheet model dependency of the simulated Greenland Ice Sheet in the mid-Pliocene. Clim. Past11, 369–381 (2015).
Haywood, A. M. et al. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design. Clim. Past12, 663–675 (2016).
Naish, T. et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature458, 322–329 (2009). (PMID: 19295607)
Pollard, D. & DeConto, R. M. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature458, 329–332 (2009). (PMID: 19295608)
Seki, O. et al. Alkenone and boron-based Pliocene pCO2 records. Earth Planet. Sci. Lett.292, 201–211 (2010).
Franco, B., Fettweis, X., Erpicum, M. & Nicolay, S. Present and future climates of the Greenland ice sheet according to the IPCC AR4 models. Clim. Dyn.36, 1897–1918 (2011).
Yan, Q., Wang, H., Johannessen, O. M. & Zhang, Z. Greenland ice sheet contribution to future global sea level rise based on CMIP5 models. Adv. Atmos. Sci.31, 8–16 (2014).
Burke, K. D. et al. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl. Acad. Sci. USA115, 13288–13293 (2018). (PMID: 30530685)
Dowsett, H. J. et al. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. Nat. Clim. Chang.2, 365–371 (2012).
Haywood, A. M. et al. Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions ( Experiment 2). Geosci. Model Dev.4, 571–577 (2011).
Zhang, R. et al. Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP. Clim. Past9, 2085–2099 (2013).
Zhang, R., Jiang, D. & Zhang, Z. Causes of mid-Pliocene strengthened summer and weakened winter monsoons over East Asia. Adv. Atmos. Sci.32, 1016–1026 (2015).
Sun, Y., Zhou, T., Ramstein, G., Contoux, C. & Zhang, Z. Drivers and mechanisms for enhanced summer monsoon precipitation over East Asia during the mid-Pliocene in the IPSL-CM5A. Clim. Dyn.46, 1437–1457 (2016).
Li, X., Jiang, D., Tian, Z. & Yang, Y. Mid-Pliocene global land monsoon from PlioMIP1 simulations. Palaeogeogr. Palaeoclimatol. Palaeoecol.512, 56–70 (2018).
Chiang, J. C. H. & Friedman, A. R. Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci.40, 383–412 (2012).
Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical convergence zone. Nature513, 45–53 (2014). (PMID: 25186899)
Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim.19, 5686–5699 (2006).
Ma, J. & Xie, S.-P. Regional patterns of sea surface temperature change: a source of uncertainty in future projections of precipitation and atmospheric circulation. J. Clim.26, 2482–2501 (2013).
Vera, C. et al. Toward a unified view of the American Monsoon systems. J. Clim.19, 4977–5000 (2006).
Nicholson, S. E. The nature of rainfall variability over Africa on time scales of decades to millenia. Glob. Planet. Change26, 137–158 (2000).
Trewartha, G. T. An Introduction to Climate (McGraw-Hill Book Co, New York, 1968).
Kodama, Y. Large-scale common features of subtropical precipitation zones (the Baiu frontal zone, the SPCZ, and the SACZ) part I: characteristics of subtropical frontal zones. J. Meteorol. Soc. Japan70, 813–836 (1992).
Widlansky, M. J., Webster, P. J. & Hoyos, C. D. On the location and orientation of the South Pacific Convergence Zone. Clim. Dyn.36, 561–578 (2011).
van der Wiel, K., Matthews, A. J., Stevens, D. P. & Joshi, M. M. A dynamical framework for the origin of the diagonal South Pacific and South Atlantic Convergence Zones. Q. J. R. Meteorol. Soc.141, 1997–2010 (2015).
Kodama, Y. M. Large-scale common features of sub-tropical convergence zones (The baiu frontal zone, the SPCZ, and the SACZ) part II: Conditions of the circulations for generating the STCZs. J. Meteorol. Soc. Jpn.71, 581–610 (1993).
Liebmann, B., Kiladis, G. N., Marengo, J., Ambrizzi, T. & Glick, J. D. Submonthly convective variability over South America and the South Atlantic convergence zone. J. Clim.12, 1877–1891 (1999).
Carvalho, L. M. V., Jones, C. & Liebmann, B. Extreme precipitation events in Southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J. Clim.15, 2377–2394 (2002).
Carvalho, L. M. V., Jones, C. & Liebmann, B. The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Clim.17, 88–108 (2004).
Zilli, M. T., Carvalho, L. M. V. & Lintner, B. R. The poleward shift of South Atlantic convergence zone in recent decades. Clim. Dyn.52, 2545–2563 (2019).
Vincent, D. G. The South Pacific convergence zone (SPCZ): a review. Mon. Weather Rev.122, 1949–1970 (1994).
Xie, S.-P. et al. Global warming pattern formation: sea surface temperature and rainfall. J. Clim.23, 966–986 (2010).
Chaves, R. R. Interactions between sea surface temperature over the South Atlantic Ocean and the South Atlantic convergence zone. Geophys. Res. Lett.31, L03204 (2004).
De Almeida, R. A. F., Nobre, P., Haarsma, R. J. & Campos, E. J. D. Negative ocean-atmosphere feedback in the South Atlantic convergence zone. Geophys. Res. Lett.34, L18809 (2007).
Vimont, D. J., Battisti, D. S. & Hirst, A. C. Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett.28, 3923–3926 (2001).
Kiladis, G. N., von Storch, H. & Loon, H. Origin of the South Pacific convergence zone. J. Clim.2, 1185–1195 (1989).
Jones, C. & Carvalho, L. M. V. Active and break phases in the South American Monsoon system. J. Clim. 905–914 (2002).
Mcgee, D. et al. Hemispherically asymmetric trade wind changes as signatures of past ITCZ shifts. Quat. Sci. Rev.180, 214–228 (2018).
Utida, G. et al. Tropical South Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during the past 2300 years. Sci. Rep.9, 1–8 (2019).
Broccoli, A. J., Dahl, K. A. & Stouffer, R. J. Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett.33 (2006).
Kang, S. M., Frierson, D. M. W. & Held, I. M. The tropical response to extratropical thermal forcing in an idealized GCM: the importance of radiative feedbacks and convective parameterization. J. Atmos. Sci.66, 2812–2827 (2009).
Bakker, P. & Prange, M. Response of the intertropical convergence zone to Antarctic Ice Sheet Melt. Geophys. Res. Lett.45, 8673–8680 (2018).
Marshall, J., Donohoe, A., Ferreira, D. & Mcgee, D. The ocean’s role in setting the mean position of the inter-tropical convergence zone. Clim. Dyn.42, 1967–1979 (2014).
Hill, D. J. et al. Evaluating the dominant components of warming in Pliocene climate simulations. Clim. Past10, 79–90 (2014).
Schneider, T. Feedback of atmosphere-ocean coupling on shifts of the intertropical convergence zone. Geophys. Res. Lett.44, 11644–11653 (2017).
McGee, D., Donohoe, A., Marshall, J. & Ferreira, D. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth Planet. Sci. Lett.390, 69–79 (2014).
Pausata, F. S. R. et al. The greening of the Sahara: past changes and future implications. One Earth2, 235–250 (2020).
Salzmann, U., Haywood, A. M., Lunt, D. J., Valdes, P. J. & Hill, D. J. A new global biome reconstruction and data-model comparison for the Middle Pliocene. Glob. Ecol. Biogeogr.17, 432–447 (2008).
Carvalho, L. M. V. et al. Moisture transport and intraseasonal variability in the South America monsoon system. Clim. Dyn.36, 1865–1880 (2011).
Zhang, J. Warming of the arctic ice-ocean system is faster than the global average since the 1960s. Geophys. Res. Lett.32 (2005).
Stroeve, J., Holland, M. M., Meier, W., Scambos, T. & Serreze, M. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett.34 (2007).
Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science (80-)348, 327–331 (2015).
Fischer, H. et al. Palaeoclimate constraints on the impact of 2 °c anthropogenic warming and beyond. Nat. Geosci.11, 474–485 (2018).
Entry Date(s):
Date Created: 20200812 Date Completed: 20201029 Latest Revision: 20210810
Update Code:
20240105
PubMed Central ID:
PMC7417591
DOI:
10.1038/s41598-020-68884-5
PMID:
32778702
Czasopismo naukowe
Thermodynamic arguments imply that global mean rainfall increases in a warmer atmosphere; however, dynamical effects may result in more significant diversity of regional precipitation change. Here we investigate rainfall changes in the mid-Pliocene Warm Period (~ 3 Ma), a time when temperatures were 2-3ºC warmer than the pre-industrial era, using output from the Pliocene Model Intercomparison Projects phases 1 and 2 and sensitivity climate model experiments. In the Mid-Pliocene simulations, the higher rates of warming in the northern hemisphere create an interhemispheric temperature gradient that enhances the southward cross-equatorial energy flux by up to 48%. This intensified energy flux reorganizes the atmospheric circulation leading to a northward shift of the Inter-Tropical Convergence Zone and a weakened and poleward displaced Southern Hemisphere Subtropical Convergences Zones. These changes result in drier-than-normal Southern Hemisphere tropics and subtropics. The evaluation of the mid-Pliocene adds a constraint to possible future warmer scenarios associated with differing rates of warming between hemispheres.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies