Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Performance of a UV-A LED system for degradation of aflatoxins B 1 and M 1 in pure water : kinetics and cytotoxicity study.

Tytuł:
Performance of a UV-A LED system for degradation of aflatoxins B 1 and M 1 in pure water : kinetics and cytotoxicity study.
Autorzy:
Stanley J; Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, 37209, USA.
Patras A; Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, 37209, USA. .
Pendyala B; Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, 37209, USA. .
Vergne MJ; Department of Pharmaceutical Sciences, Department of Chemistry and Biochemistry, Lipscomb University, Nashville, TN, 37204, USA.
Bansode RR; Center for Excellence in Post-Harvest Technologies, North Carolina Research Campus, North Carolina Agricultural and Technical State University, Kannapolis, 28081, NC, USA.
Źródło:
Scientific reports [Sci Rep] 2020 Aug 10; Vol. 10 (1), pp. 13473. Date of Electronic Publication: 2020 Aug 10.
Typ publikacji:
Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Aflatoxins/*analysis
Ultraviolet Rays/*adverse effects
Water Purification/*methods
Aflatoxin B1/analysis ; Aflatoxin B1/toxicity ; Aflatoxin M1/analysis ; Aflatoxin M1/toxicity ; Aflatoxins/toxicity ; Chromatography, High Pressure Liquid/methods ; Chromatography, Liquid/methods ; Hep G2 Cells ; Humans ; Kinetics ; Tandem Mass Spectrometry/methods ; Water
References:
Pankaj, S. K., Shi, H. & Keener, K. M. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci. Technol.71, 73–83 (2018). (PMID: 10.1016/j.tifs.2017.11.007)
Asao, T. et al. The structures of aflatoxins B and G1. J. Am. Chem. Soc.87, 882–886 (1965). (PMID: 10.1021/ja01082a031)
Rustom, I. Y. S. Aflatoxin in Food and Feed: Occurrence, Legislation and Inactivation by Physical Methods. Food Chemistry Vol. 59 (Elsevier, Amsterdam, 1997).
Dhanasekaran, D., Shanmugapriya, S., Thajuddin, N. & Panneerselvam, A. Aflatoxins and aflatoxicosis in human and animals. Aflatoxins Biochem. Mol. Biol. https://doi.org/10.5772/22717 (2011). (PMID: 10.5772/22717)
Kamkar, A., Fallah, A. A. & Mozaffari Nejad, A. S. The review of aflatoxin M1 contamination in milk and dairy products produced in Iran. Toxin Rev.33, 160–168 (2014). (PMID: 10.3109/15569543.2014.922580)
Marin, S., Ramos, A. J., Cano-Sancho, G. & Sanchis, V. Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem. Toxicol.60, 218–237 (2013). (PMID: 10.1016/j.fct.2013.07.047)
Samarajeewa, U., Sen, A. C., Cohen, M. D. & Wei, C. I. Detoxification of aflatoxins in foods and feeds by physical and chemical methods. J. Food Prot.53, 489–501 (1990). (PMID: 10.4315/0362-028X-53.6.489)
International Agency for Research on Cancer (IARC). Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. in Aflatoxins 245–295 (1993).
Udomkun, P. et al. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application—a review. Food Control76, 127–138 (2017). (PMID: 10.1016/j.foodcont.2017.01.008)
Iqbal, S. Z., Jinap, S., Pirouz, A. A. & Ahmad Faizal, A. R. Aflatoxin M1 in milk and dairy products, occurrence and recent challenges: a review. Trends Food Sci. Technol.46, 110–119 (2015). (PMID: 10.1016/j.tifs.2015.08.005)
Guo, W. et al. Reduced graphene oxide-gold nanoparticle nanoframework as a highly selective separation material for aflatoxins. Sci. Rep. https://doi.org/10.1038/s41598-017-15210-1 (2017). (PMID: 10.1038/s41598-017-15210-1292737825741739)
Iram, W., Anjum, T., Iqbal, M., Ghaffar, A. & Abbas, M. Mass spectrometric identification and toxicity assessment of degraded products of aflatoxin B1 and B2 by Corymbia citriodora aqueous extracts. Sci. Rep.5, 14672 (2015). (PMID: 10.1038/srep14672)
Prietto, L. et al. Post-harvest operations and aflatoxin levels in rice (Oryza sativa). Crop Prot.78, 172–177 (2015). (PMID: 10.1016/j.cropro.2015.09.011)
Wang, B. et al. Effectiveness of pulsed light treatment for degradation and detoxification of aflatoxin B1 and B2 in rough rice and rice bran. Food Control59, 461–467 (2016). (PMID: 10.1016/j.foodcont.2015.06.030)
Moreau, M. et al. Application of the pulsed light technology to mycotoxin degradation and inactivation. J. Appl. Toxicol.33, 357–363 (2013). (PMID: 10.1002/jat.1749)
Patras, A. et al. Effect of UV irradiation on aflatoxin reduction: a cytotoxicity evaluation study using human hepatoma cell line. Mycotoxin Res.33, 343–350 (2017). (PMID: 10.1007/s12550-017-0291-0)
Chandra, S. et al. Patulin degradation and cytotoxicity evaluation of UV irradiated apple juice using human peripheral blood mononuclear cells. J. Food Process Eng.40, 1–9 (2017). (PMID: 10.1111/jfpe.12586)
Gopisetty, V. V. S. et al. Impact of UV-C irradiation on the quality, safety, and cytotoxicity of cranberry-flavored water using a novel continuous flow UV system. LWT95, 230–239 (2018). (PMID: 10.1016/j.lwt.2018.04.042)
Pendyala, B., Patras, A., Gopisetty, V. V. S., Sasges, M. & Balamurugan, S. Inactivation of bacillus and clostridium spores in coconut water by ultraviolet light. Foodborne Pathog. Dis.16, 704–711 (2019). (PMID: 10.1089/fpd.2019.2623)
Pendyala, B., Patras, A., Ramaswamy, R., Gopisetty, V. V. S. & Sasges, M. Evaluation of UV-C irradiation treatments on microbial safety, ascorbic acid, and volatile aromatics content of watermelon beverage. Food Bioprocess. Technol. https://doi.org/10.1007/s11947-019-02363-2 (2019). (PMID: 10.1007/s11947-019-02363-2)
Van der Zijden, A. S. M. et al. Aspergillus flavus and Turkey X disease: isolation in crystalline form of a toxin responsible for Turkey X disease. Nat. Int. J. Sci.196, 1048–1050 (1962).
Liu, R. et al. Photodegradation of aflatoxin B1 in peanut oil. Eur. Food Res. Technol.232, 843–849 (2011). (PMID: 10.1007/s00217-011-1452-6)
Yousef, A. E. & Marth, E. H. Degradation of aflatoxin M 1 in milk by ultraviolet energy. J. Food Prot.48, 697–698 (1985). (PMID: 10.4315/0362-028X-48.8.697)
Koutchma, T. Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food Bioprocess. Technol.2, 138–155 (2009). (PMID: 10.1007/s11947-008-0178-3)
Antonio-Gutiérrez, O. T., López-Díaz, A. S., López-Malo, A., Palou, E. & Ramírez-Corona, N. UV-C Light for Processing Beverages: Principles, Applications, and Future Trends. Processing and Sustainability of Beverages (Elsevier, 2019). https://doi.org/10.1016/b978-0-12-815259-1.00007-0 .
Gromadzka, K., Waśkiewicz, A., Goliński, P. & Świetlik, J. Occurrence of estrogenic mycotoxin—Zearalenone in aqueous environmental samples with various NOM content. Water Res. https://doi.org/10.1016/j.watres.2008.11.042 (2009). (PMID: 10.1016/j.watres.2008.11.04219084253)
Laganà, A. et al. Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. Anal. Chim. Acta https://doi.org/10.1016/j.aca.2003.09.020 (2004). (PMID: 10.1016/j.aca.2003.09.020)
Paterson, R. R. M., Kelley, J. & Gallagher, M. Natural occurrence of aflatoxins and Aspergillus flavus (Link) in water. Lett. Appl. Microbiol. https://doi.org/10.1111/j.1472-765X.1997.tb00012.x (1997). (PMID: 10.1111/j.1472-765X.1997.tb00012.x9449858)
Mata, A. T. et al. Bottled water: analysis of mycotoxins by LC-MS/MS. Food Chem. https://doi.org/10.1016/j.foodchem.2014.12.088 (2015). (PMID: 10.1016/j.foodchem.2014.12.08826617003)
Jubeen, F., Bhatti, I. A., Khan, M. Z., Zahoor-Ul-Hassan, H. & Shahid, M. Effect of UVC irradiation on aflatoxins in ground nut (Arachis hypogea) and tree nuts (Juglans regia, prunus duclus and pistachio vera). J. Chem. Soc. Pak.34, 1366–1374 (2012).
Bolton, J. R. & Linden, K. G. Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. J. Environ. Eng.129, 209–215 (2003). (PMID: 10.1061/(ASCE)0733-9372(2003)129:3(209))
Geeraerd, A. H., Valdramidis, V. P. & Van Impe, J. F. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int. J. Food Microbiol.102, 95–105 (2005). (PMID: 10.1016/j.ijfoodmicro.2004.11.038)
Reina, A. C. et al. Photochemical degradation of the carbapenem antibiotics imipenem and meropenem in aqueous solutions under solar radiation. Water Res.128, 61–70 (2018). (PMID: 10.1016/j.watres.2017.10.047)
Challis, J. K., Hanson, M. L., Friesen, K. J. & Wong, C. S. A critical assessment of the photodegradation of pharmaceuticals in aquatic environments: defining our current understanding and identifying knowledge gaps. Environ. Sci. Process. Impacts16, 672–696 (2014). (PMID: 10.1039/c3em00615h)
Bolton, J. R., Mayor-Smith, I. & Linden, K. G. Rethinking the concepts of fluence (UV dose) and fluence rate: the importance of photon-based units—a systemic review. Photochem. Photobiol.91, 1252–1262 (2015). (PMID: 10.1111/php.12512)
Netto-Ferreira, J. C., Heyne, B. & Scaiano, J. C. Photophysics and photochemistry of aflatoxins B1 and B 2. Photochem. Photobiol. Sci.10, 1701–1708 (2011). (PMID: 10.1039/c1pp05103b)
Mao, J. et al. A structure identification and toxicity assessment of the degradation products of aflatoxin B 1 in peanut oil under UV irradiation. Toxins (Basel)8, 332 (2016). (PMID: 10.3390/toxins8110332)
Diao, E. et al. Safety evaluation of aflatoxin B1 in peanut oil after ultraviolet irradiation detoxification in a photodegradation reactor. Int. J. Food Sci. Technol.50, 41–47 (2015). (PMID: 10.1111/ijfs.12648)
Wogan, G. N., Edwards, G. S. & Newberne, P. M. Structure-activity relationships in toxicity and carcinogenicity of aflatoxins and analogs. Cancer Res.31, 1936–1942 (1971). (PMID: 4330435)
Lillehoj, E. B. & Ciegler, A. Biological activity of aflatoxin B2a. Appl. Microbiol.17, 516–519 (1969). (PMID: 10.1128/AEM.17.4.516-519.1969)
Wang, F. et al. Structure elucidation and toxicity analyses of the radiolytic products of aflatoxin B 1 in methanol-water solution. J. Hazard. Mater.192, 1192–1202 (2011). (PMID: 10.1016/j.jhazmat.2011.06.027)
Lee, L. S., Dunn, J. J., DeLucca, A. J. & Ciegler, A. Role of lactone ring of aflatoxin B1 in toxicity and mutagenicity. Experientia37, 16–17 (1981). (PMID: 10.1007/BF01965543)
Van Vleet, T. R., Watterson, T. L., Klein, P. J. & Coulombe, R. A. Aflatoxin B 1 alters the expression of p53 in cytochrome p450-expressing human lung cells. Toxicol. Sci.89, 399–407 (2006). (PMID: 10.1093/toxsci/kfj039)
Liu, Y., Du, M. & Zhang, G. Proapoptotic activity of aflatoxin B1 and sterigmatocystin in HepG2 cells. Toxicol. Rep.1, 1076–1086 (2014). (PMID: 10.1016/j.toxrep.2014.10.016)
Yener, Z., Celik, I., Ilhan, F. & Bal, R. Effects of Urtica dioica L. seed on lipid peroxidation, antioxidants and liver pathology in aflatoxin-induced tissue injury in rats. Food Chem. Toxicol. https://doi.org/10.1016/j.fct.2008.11.031 (2009). (PMID: 10.1016/j.fct.2008.11.03119500643)
Shi, D. et al. Protective effects of selenium on aflatoxin B1-induced mitochondrial permeability transition, DNA damage, and histological alterations in duckling liver. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-014-0189-z (2015). (PMID: 10.1007/s12011-014-0189-z26463750)
Shi, J. et al. Distinct response of the hepatic transcriptome to Aflatoxin B 1 induced hepatocellular carcinogenesis and resistance in rats. Sci. Rep. https://doi.org/10.1038/srep31898 (2016). (PMID: 10.1038/srep31898280090025180239)
Theumer, M. G. et al. Subchronic mycotoxicoses in Wistar rats: assessment of the in vivo and in vitro genotoxicity induced by fumonisins and aflatoxin B1, and oxidative stress biomarkers status. Toxicology https://doi.org/10.1016/j.tox.2009.12.007 (2010). (PMID: 10.1016/j.tox.2009.12.00720015463)
Mary, V. S., Theumer, M. G., Arias, S. L. & Rubinstein, H. R. Reactive oxygen species sources and biomolecular oxidative damage induced by aflatoxin B1 and fumonisin B1 in rat spleen mononuclear cells. Toxicology https://doi.org/10.1016/j.tox.2012.08.012 (2012). (PMID: 10.1016/j.tox.2012.08.01222981896)
Liu, Y. & Wang, W. Aflatoxin B1 impairs mitochondrial functions, activates ROS generation, induces apoptosis and involves Nrf2 signal pathway in primary broiler hepatocytes. Anim. Sci. J.87, 1490–1500 (2016). (PMID: 10.1111/asj.12550)
Wogan, G. N. & Paglialunga, S. Carcinogenicity of synthetic aflatoxin M1 in rats. Food Cosmet. Toxicol. https://doi.org/10.1016/0015-6264(74)90012-1 (1974). (PMID: 10.1016/0015-6264(74)90012-14375655)
Neal, G. E., Eaton, D. L., Judah, D. J. & Verma, A. Metabolism and toxicity of aflatoxins M 1 and B 1 in human-derived in vitro systems. Toxicol. Appl. Pharmacol.151, 152–158 (1998). (PMID: 10.1006/taap.1998.8440)
Substance Nomenclature:
0 (Aflatoxins)
059QF0KO0R (Water)
6795-23-9 (Aflatoxin M1)
9N2N2Y55MH (Aflatoxin B1)
Entry Date(s):
Date Created: 20200812 Date Completed: 20201217 Latest Revision: 20210810
Update Code:
20240105
PubMed Central ID:
PMC7417570
DOI:
10.1038/s41598-020-70370-x
PMID:
32778713
Czasopismo naukowe
The efficacy of a UV-A light emitting diode system (LED) to reduce the concentrations of aflatoxin B 1 , aflatoxin M 1 (AFB 1 , AFM 1 ) in pure water was studied. This work investigates and reveals the kinetics and main mechanism(s) responsible for the destruction of aflatoxins in pure water and assesses the cytotoxicity in liver hepatocellular cells. Irradiation experiments were conducted using an LED system operating at 365 nm (monochromatic wave-length). Known concentrations of aflatoxins were spiked in water and irradiated at UV-A doses ranging from 0 to 1,200 mJ/cm 2 . The concentration of AFB 1 and AFM 1 was determined by HPLC with fluorescence detection. LC-MS/MS product ion scans were used to identify and semi-quantify degraded products of AFB 1 and AFM 1 . It was observed that UV-A irradiation significantly reduced aflatoxins in pure water. In comparison to control, at dose of 1,200 mJ/cm 2 UV-A irradiation reduced AFB 1 and AFM 1 concentrations by 70 ± 0.27 and 84 ± 1.95%, respectively. We hypothesize that the formation of reactive species initiated by UV-A light may have caused photolysis of AFB 1 and AFM 1 molecules in water. In cell culture studies, our results demonstrated that the increase of UV-A dosage decreased the aflatoxins-induced cytotoxicity in HepG2 cells, and no significant aflatoxin-induced cytotoxicity was observed at UV-A dose of 1,200 mJ/cm 2 . Further results from this study will be used to compare aflatoxins detoxification kinetics and mechanisms involved in liquid foods such as milk and vegetable oils.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies