Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Synergic Effects of Temperature and Irradiance on the Physiology of the Marine Synechococcus Strain WH7803.

Tytuł:
Synergic Effects of Temperature and Irradiance on the Physiology of the Marine Synechococcus Strain WH7803.
Autorzy:
Guyet U; CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France.
Nguyen NA; CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France.
Doré H; CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France.
Haguait J; LS2N, UMR CNRS 6004, IMT Atlantique, ECN, Université de Nantes, Nantes, France.
Pittera J; CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France.
Conan M; DYLISS (INRIA-IRISA)-INRIA, CNRS UMR 6074, Université de Rennes 1, Rennes, France.
Ratin M; CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France.
Corre E; CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France.
Le Corguillé G; CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France.
Brillet-Guéguen L; CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France.; CNRS, UMR 8227 Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, Roscoff, France.
Hoebeke M; CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France.
Six C; CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France.
Steglich C; Faculty of Biology, University of Freiburg, Freiburg, Germany.
Siegel A; DYLISS (INRIA-IRISA)-INRIA, CNRS UMR 6074, Université de Rennes 1, Rennes, France.
Eveillard D; LS2N, UMR CNRS 6004, IMT Atlantique, ECN, Université de Nantes, Nantes, France.
Partensky F; CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France.
Garczarek L; CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France.
Źródło:
Frontiers in microbiology [Front Microbiol] 2020 Jul 24; Vol. 11, pp. 1707. Date of Electronic Publication: 2020 Jul 24 (Print Publication: 2020).
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Lausanne : Frontiers Research Foundation
References:
J Proteomics. 2016 May 17;140:81-99. (PMID: 27102494)
Genome Biol. 2014;15(12):550. (PMID: 25516281)
Plant Physiol. 2008 Oct;148(2):1068-81. (PMID: 18715956)
Sci Rep. 2015 Oct 13;5:14894. (PMID: 26459862)
Bioinformatics. 2015 Jan 15;31(2):166-9. (PMID: 25260700)
J Proteome Res. 2010 Dec 3;9(12):6740-51. (PMID: 20936830)
BMC Microbiol. 2008 Feb 26;8:37. (PMID: 18302792)
ISME J. 2017 Jan;11(1):112-124. (PMID: 27458784)
J Biol Chem. 2016 Mar 11;291(11):5902-12. (PMID: 26703473)
Front Microbiol. 2012 Oct 11;3:354. (PMID: 23087677)
Biochem J. 2004 Oct 15;383(Pt 2):277-83. (PMID: 15225123)
Microbiology. 2002 Jul;148(Pt 7):2255-2265. (PMID: 12101312)
Proc Natl Acad Sci U S A. 2016 May 10;113(19):5441-6. (PMID: 27114545)
Genome Res. 2002 Oct;12(10):1507-16. (PMID: 12368242)
Plant Cell Physiol. 2011 Feb;52(2):404-12. (PMID: 21216748)
PLoS One. 2009;4(4):e5135. (PMID: 19352512)
FEMS Microbiol Rev. 2009 Mar;33(2):258-78. (PMID: 18834454)
Biochim Biophys Acta. 2016 Sep;1857(9):1430-1439. (PMID: 27133505)
Biochim Biophys Acta. 2008 Mar;1777(3):269-76. (PMID: 18241667)
Mol Syst Biol. 2006;2:53. (PMID: 17016519)
Sci Rep. 2019 Oct 4;9(1):14331. (PMID: 31586076)
J Biol Chem. 2004 Mar 26;279(13):13234-40. (PMID: 14707128)
Front Microbiol. 2016 Feb 19;7:193. (PMID: 26925056)
Nucleic Acids Res. 1985 Mar 11;13(5):1483-92. (PMID: 2987825)
Bioinformatics. 2012 Dec 15;28(24):3211-7. (PMID: 23071270)
New Phytol. 2017 Aug;215(3):937-951. (PMID: 28675536)
J Bacteriol. 2003 Jun;185(12):3654-60. (PMID: 12775703)
Biochim Biophys Acta. 2006 Jul;1757(7):742-9. (PMID: 16784721)
ISME J. 2014 Jun;8(6):1221-36. (PMID: 24401861)
Eukaryot Cell. 2008 Nov;7(11):1965-79. (PMID: 18708561)
Physiol Plant. 2012 Jul;145(3):426-39. (PMID: 22289076)
BMC Genomics. 2013 Aug 13;14:549. (PMID: 23941329)
FEBS Lett. 2005 Apr 25;579(11):2289-93. (PMID: 15848160)
Curr Protoc Cytom. 2001 May;Chapter 11:Unit 11.11. (PMID: 18770685)
PLoS One. 2016 Jun 09;11(6):e0157022. (PMID: 27280887)
Plant Physiol. 2011 Aug;156(4):1934-54. (PMID: 21670225)
Crit Rev Biochem Mol Biol. 2010 Jun;45(3):171-84. (PMID: 20441441)
Front Microbiol. 2019 Aug 13;10:1899. (PMID: 31456794)
Nat Plants. 2016 Dec 02;2(12):16180. (PMID: 27909300)
Biochem Biophys Res Commun. 2007 Oct 12;362(1):81-87. (PMID: 17697671)
Biochim Biophys Acta. 1997 Nov 10;1322(1):1-7. (PMID: 9398074)
Sci Rep. 2016 Sep 09;6:33024. (PMID: 27611502)
Mol Microbiol. 2003 Jul;49(2):401-10. (PMID: 12828638)
Biochim Biophys Acta. 2012 Jan;1817(1):194-208. (PMID: 21569758)
Plant Physiol. 2016 Feb;170(2):752-60. (PMID: 26644505)
Plant Physiol. 2003 Aug;132(4):1825-39. (PMID: 12913140)
Mol Gen Genet. 1992 Mar;232(2):221-30. (PMID: 1372952)
Biochim Biophys Acta. 2008 Jan;1777(1):74-83. (PMID: 18053792)
J Bacteriol. 1985 Sep;163(3):817-23. (PMID: 3897194)
FEMS Microbiol Rev. 2014 Nov;38(6):1126-45. (PMID: 24923554)
Nucleic Acids Res. 2006 Jun 21;34(11):3220-30. (PMID: 16790567)
Comp Funct Genomics. 2012;2012:164690. (PMID: 22474409)
ISME J. 2011 Oct;5(10):1580-94. (PMID: 21562599)
Int J Syst Evol Microbiol. 2000 Sep;50 Pt 5:1833-1847. (PMID: 11034495)
Plant Physiol. 2004 Sep;136(1):2855-61. (PMID: 15347790)
Science. 2010 Jul 30;329(5991):559-62. (PMID: 20671186)
Biochem J. 2006 Sep 15;398(3):361-9. (PMID: 16759173)
J Biol Chem. 2003 Apr 4;278(14):12191-8. (PMID: 12502718)
Plant Physiol. 2010 Dec;154(4):1672-85. (PMID: 20935175)
Mol Microbiol. 2004 Jul;53(1):65-80. (PMID: 15225304)
Curr Biol. 2016 Apr 25;26(8):999-1008. (PMID: 27040778)
Plant Cell. 2011 Jul;23(7):2631-43. (PMID: 21764991)
Front Plant Sci. 2016 Apr 07;7:423. (PMID: 27092151)
Plant Cell. 2014 Mar;26(3):1200-12. (PMID: 24681620)
Front Microbiol. 2013 Aug 16;4:232. (PMID: 23966990)
Microbiol Mol Biol Rev. 2008 Mar;72(1):110-25, table of contents. (PMID: 18322036)
Appl Environ Microbiol. 2015 Nov;81(21):7644-55. (PMID: 26319880)
Photochem Photobiol Sci. 2005 Dec;4(12):950-6. (PMID: 16307107)
RNA Biol. 2019 Sep;16(9):1205-1214. (PMID: 31234711)
ISME J. 2008 Sep;2(9):937-53. (PMID: 18509382)
Appl Environ Microbiol. 2009 Oct;75(19):6110-23. (PMID: 19666735)
J Evol Biol. 2005 Jul;18(4):873-83. (PMID: 16033559)
Photochem Photobiol Sci. 2007 May;6(5):508-14. (PMID: 17487300)
Front Microbiol. 2016 Nov 09;7:1809. (PMID: 27881980)
Photochem Photobiol Sci. 2002 Oct;1(10):729-36. (PMID: 12656470)
J Basic Microbiol. 2015 Jun;55(6):729-40. (PMID: 25572501)
J Bacteriol. 2002 Dec;184(24):6845-58. (PMID: 12446635)
Sensors (Basel). 2010;10(3):2386-415. (PMID: 22294932)
Genome Biol. 2007;8(12):R259. (PMID: 18062815)
Nucleic Acids Res. 2012 Jan;40(Database issue):D627-31. (PMID: 22096236)
Mol Microbiol. 2002 Nov;46(4):905-15. (PMID: 12421299)
Microbiology. 2017 Jul;163(7):1016-1029. (PMID: 28696187)
Ecology. 2007 Jun;88(6):1386-94. (PMID: 17601131)
Environ Microbiol. 2013 Jul;15(7):2129-43. (PMID: 23647921)
Plant Physiol. 2008 Jun;147(2):747-63. (PMID: 18424627)
Nat Methods. 2012 Mar 04;9(4):357-9. (PMID: 22388286)
DNA Repair (Amst). 2009 Jun 4;8(6):697-703. (PMID: 19269902)
Genome Biol. 2016 Apr 12;17:66. (PMID: 27072794)
Front Microbiol. 2012 Aug 08;3:285. (PMID: 23024637)
Glob Chang Biol. 2020 Jun 7;:. (PMID: 32506810)
J Exp Bot. 2005 Dec;56(422):3193-206. (PMID: 16284092)
Photosynth Res. 2018 Jul;137(1):29-39. (PMID: 29280045)
Philos Trans R Soc Lond B Biol Sci. 2017 Sep 26;372(1730):. (PMID: 28808107)
Plant Cell. 2001 Apr;13(4):793-806. (PMID: 11283337)
Environ Microbiol. 2018 Feb;20(2):612-631. (PMID: 29124854)
J Bacteriol. 1999 Mar;181(6):1728-32. (PMID: 10074063)
Life (Basel). 2014 Dec 29;5(1):25-49. (PMID: 25551682)
Biochim Biophys Acta. 2011 Aug;1807(8):977-88. (PMID: 21167811)
Nature. 2007 Sep 6;449(7158):83-6. (PMID: 17805294)
New Phytol. 2020 Mar;225(6):2396-2410. (PMID: 31591719)
FEBS Lett. 2012 Nov 16;586(22):4016-22. (PMID: 23068614)
Plant Physiol. 2012 Jan;158(1):476-86. (PMID: 22086423)
BMC Bioinformatics. 2008 Dec 29;9:559. (PMID: 19114008)
Microbiology. 2004 Feb;150(Pt 2):497-512. (PMID: 14766928)
Photosynth Res. 2000;64(2-3):257-66. (PMID: 16228463)
Lipids. 1994 Feb;29(2):149-50. (PMID: 8152349)
Physiol Plant. 2004 Jan;120(1):27-35. (PMID: 15032874)
ISME J. 2009 Jul;3(7):835-49. (PMID: 19340084)
Cell. 1983 May;33(1):249-60. (PMID: 6380755)
Science. 2012 Mar 2;335(6072):1103-6. (PMID: 22383849)
ISME J. 2014 Oct;8(10):2056-68. (PMID: 24739626)
Plant Cell. 2007 Mar;19(3):1039-47. (PMID: 17351117)
Plant Physiol Biochem. 2014 Aug;81:96-107. (PMID: 24656878)
Biochemistry. 2004 Sep 28;43(38):12210-9. (PMID: 15379559)
Bioinformatics. 2011 Mar 15;27(6):863-4. (PMID: 21278185)
Genetics. 2016 Jul;203(3):1149-59. (PMID: 27182944)
Mol Syst Biol. 2010 May 11;6:364. (PMID: 20461071)
Biochim Biophys Acta Bioenerg. 2017 Apr;1858(4):308-317. (PMID: 28188781)
Plant Physiol. 2011 Apr;155(4):1640-55. (PMID: 21282404)
J Bacteriol. 2003 Mar;185(5):1719-25. (PMID: 12591891)
Biochem J. 2017 Jul 6;474(14):2435-2447. (PMID: 28592683)
Mol Microbiol. 2001 Apr;40(1):235-44. (PMID: 11298290)
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9824-9. (PMID: 23703908)
Annu Rev Plant Biol. 2013;64:609-35. (PMID: 23451783)
J Bacteriol. 2000 Mar;182(5):1251-6. (PMID: 10671444)
Nature. 2016 Apr 28;532(7600):465-470. (PMID: 26863193)
Crit Rev Biochem Mol Biol. 2007 Sep-Oct;42(5):399-435. (PMID: 17917874)
Trends Plant Sci. 2008 Apr;13(4):178-82. (PMID: 18328775)
ISME J. 2016 May;10(5):1252-63. (PMID: 26495993)
Plant Physiol. 1997 Jul;114(3):841-9. (PMID: 9232871)
Microbiol Mol Biol Rev. 2009 Jun;73(2):249-99. (PMID: 19487728)
J Exp Bot. 2008;59(11):3009-18. (PMID: 18611912)
Front Microbiol. 2016 Aug 18;7:1283. (PMID: 27588019)
Plant Cell. 2006 Sep;18(9):2236-46. (PMID: 16905652)
Contributed Indexing:
Keywords: Synechococcus; UV radiations; light stress; marine cyanobacteria; temperature stress; transcriptomics
Entry Date(s):
Date Created: 20200815 Latest Revision: 20200928
Update Code:
20240105
PubMed Central ID:
PMC7393227
DOI:
10.3389/fmicb.2020.01707
PMID:
32793165
Czasopismo naukowe
Understanding how microorganisms adjust their metabolism to maintain their ability to cope with short-term environmental variations constitutes one of the major current challenges in microbial ecology. Here, the best physiologically characterized marine Synechococcus strain, WH7803, was exposed to modulated light/dark cycles or acclimated to continuous high-light (HL) or low-light (LL), then shifted to various stress conditions, including low (LT) or high temperature (HT), HL and ultraviolet (UV) radiations. Physiological responses were analyzed by measuring time courses of photosystem (PS) II quantum yield, PSII repair rate, pigment ratios and global changes in gene expression. Previously published membrane lipid composition were also used for correlation analyses. These data revealed that cells previously acclimated to HL are better prepared than LL-acclimated cells to sustain an additional light or UV stress, but not a LT stress. Indeed, LT seems to induce a synergic effect with the HL treatment, as previously observed with oxidative stress. While all tested shift conditions induced the downregulation of many photosynthetic genes, notably those encoding PSI, cytochrome b 6 /f and phycobilisomes, UV stress proved to be more deleterious for PSII than the other treatments, and full recovery of damaged PSII from UV stress seemed to involve the neo-synthesis of a fairly large number of PSII subunits and not just the reassembly of pre-existing subunits after D1 replacement. In contrast, genes involved in glycogen degradation and carotenoid biosynthesis pathways were more particularly upregulated in response to LT. Altogether, these experiments allowed us to identify responses common to all stresses and those more specific to a given stress, thus highlighting genes potentially involved in niche acclimation of a key member of marine ecosystems. Our data also revealed important specific features of the stress responses compared to model freshwater cyanobacteria.
(Copyright © 2020 Guyet, Nguyen, Doré, Haguait, Pittera, Conan, Ratin, Corre, Le Corguillé, Brillet-Guéguen, Hoebeke, Six, Steglich, Siegel, Eveillard, Partensky and Garczarek.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies