Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Complete Genome Sequence of Lactobacillus hilgardii LMG 7934, Carrying the Gene Encoding for the Novel PII-Like Protein PotN.

Tytuł:
Complete Genome Sequence of Lactobacillus hilgardii LMG 7934, Carrying the Gene Encoding for the Novel PII-Like Protein PotN.
Autorzy:
Zhuravleva DE; Kazan Federal University, Kazan, Russia.
Iskhakova ZI; Kazan Federal University, Kazan, Russia.
Ozhegov GD; Kazan Federal University, Kazan, Russia.
Gogoleva NE; Kazan Federal University, Kazan, Russia.; Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, Kazan, Russia.
Khusnutdinova DR; Kazan Federal University, Kazan, Russia.
Shagimardanova EI; Kazan Federal University, Kazan, Russia.
Forchhammer K; Eberhard Karls University Tübingen, Tübingen, Germany.
Kayumov AR; Kazan Federal University, Kazan, Russia. .
Źródło:
Current microbiology [Curr Microbiol] 2020 Nov; Vol. 77 (11), pp. 3538-3545. Date of Electronic Publication: 2020 Aug 14.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: New York, Springer International.
MeSH Terms:
Lactobacillus*/genetics
Operon*
Bacterial Proteins/genetics ; Base Sequence
References:
Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E et al (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103(42):15611–15616. https://doi.org/10.1073/pnas.0607117103. (PMID: 10.1073/pnas.060711710317030793)
Hammes WP, Vogel RF (1995) The genus Lactobacillus. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria. Springer, Boston, pp 19–54. (PMID: 10.1007/978-1-4615-5817-0_3)
Rhee SJ, Lee JE, Lee CH (2011) Importance of lactic acid bacteria in Asian fermented foods. Microb Cell Fact. 10(Suppl 1):S5. https://doi.org/10.1186/1475-2859-10-S1-S5. (PMID: 10.1186/1475-2859-10-S1-S5219953423231931)
Wang D, Liu W, Ren Y, De L, Zhang D, Yang Y et al (2016) Isolation and identification of lactic acid bacteria from traditional dairy products in Baotou and Bayannur of Midwestern Inner Mongolia and q-PCR analysis of predominant species. Korean J Food Sci Anim Resour 36(4):499–507. https://doi.org/10.5851/kosfa.2016.36.4.499. (PMID: 10.5851/kosfa.2016.36.4.499276216915018510)
Franciosi E, Carafa I, Nardin T, Schiavon S, Poznanski E, Cavazza A et al (2015) Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses. Biomed Res Int 2015:625740. https://doi.org/10.1155/2015/625740. (PMID: 10.1155/2015/625740258028594352725)
Foligné B, Daniel C, Pot B (2013) Probiotics from research to market: the possibilities, risks and challenges. Curr Opin Microbiol 16(3):284–292. https://doi.org/10.1016/j.mib.2013.06.008. (PMID: 10.1016/j.mib.2013.06.00823866974)
Solieri L, Bianchi A, Mottolese G, Lemmetti F, Giudici P (2014) Tailoring the probiotic potential of non-starter Lactobacillus strains from ripened Parmigiano Reggiano cheese by in vitro screening and principal component analysis. Food Microbiol 38:240–249. https://doi.org/10.1016/j.fm.2013.10.003. (PMID: 10.1016/j.fm.2013.10.00324290648)
Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman W (2009) Bergey's manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 465–511.
Fernandes GD, Hauf K, Sant'Anna FH, Forchhammer K, Passaglia LMP (2017) Glutamine synthetase stabilizes the binding of GlnR to nitrogen fixation gene operators. FEBS J 284(6):903–918. https://doi.org/10.1111/febs.14021. (PMID: 10.1111/febs.1402128109177)
Hu P, Leighton T, Ishkhanova G, Kustu S (1999) Sensing of nitrogen limitation by Bacillus subtilis: comparison to enteric bacteria. J Bacteriol 181(16):5042–5050. (PMID: 10.1128/JB.181.16.5042-5050.1999)
Leigh JA, Dodsworth JA (2007) Nitrogen regulation in Bacteria and Archaea. Annu Rev Microbiol 61:349–377. https://doi.org/10.1146/annurev.micro.61.080706.093409. (PMID: 10.1146/annurev.micro.61.080706.09340917506680)
Forchhammer K (2008) P-II signal transducers: novel functional and structural insights. Trends Microbiol 16(2):65–72. https://doi.org/10.1016/j.tim.2007.11.004. (PMID: 10.1016/j.tim.2007.11.00418182294)
Huergo LF, Chandra G, Merrick M (2013) P(II) signal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 37(2):251–283. https://doi.org/10.1111/j.1574-6976.2012.00351.x. (PMID: 10.1111/j.1574-6976.2012.00351.x22861350)
Merrick M (2015) Post-translational modification of P-II signal transduction proteins. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00763. (PMID: 10.3389/fmicb.2014.00763256104374285133)
Lapina T, Selim KA, Forchhammer K, Ermilova E (2018) The PII signaling protein from red algae represents an evolutionary link between cyanobacterial and chloroplastida PII proteins. Sci Rep. https://doi.org/10.1038/s41598-017-19046-7. (PMID: 10.1038/s41598-017-19046-7293356345768801)
Forchhammer K, Lüddecke J (2016) Sensory properties of the PII signalling protein family. FEBS J 283(3):425–437. https://doi.org/10.1111/febs.13584. (PMID: 10.1111/febs.1358426527104)
Luddecke J, Forchhammer K (2015) Energy sensing versus 2-oxoglutarate dependent ATPase switch in the control of Synechococcus P-II interaction with its targets NAGK and PipX. PLoS ONE 10(8):9. https://doi.org/10.1371/journal.pone.0137114. (PMID: 10.1371/journal.pone.0137114)
Truan D, Bjelic S, Li XD, Winkler FK (2014) Structure and thermodynamics of effector molecule binding to the nitrogen signal transduction P-II protein GInZ from Azospirillum brasilense. J Mol Biol 426(15):2783–2799. https://doi.org/10.1016/j.jmb.2014.05.008. (PMID: 10.1016/j.jmb.2014.05.00824846646)
Ninfa AJ, Atkinson MR (2000) PII signal transduction proteins. Trends Microbiol 8(4):172–179. https://doi.org/10.1016/s0966-842x(00)01709-1. (PMID: 10.1016/s0966-842x(00)01709-110754576)
Radchenko MV, Thornton J, Merrick M (2010) Control of AmtB-GlnK complex formation by intracellular levels of ATP, ADP, and 2-oxoglutarate. J Biol Chem 285(40):31037–31045. https://doi.org/10.1074/jbc.M110.153908. (PMID: 10.1074/jbc.M110.153908206395782945594)
Llacer JL, Espinosa J, Castells MA, Contreras A, Forchhammer K, Rubio V (2010) Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII. Proc Natl Acad Sci USA 107(35):15397–15402. https://doi.org/10.1073/pnas.1007015107. (PMID: 10.1073/pnas.100701510720716687)
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data.
Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13(6):e1005595. https://doi.org/10.1371/journal.pcbi.1005595. (PMID: 10.1371/journal.pcbi.1005595285948275481147)
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153. (PMID: 10.1093/bioinformatics/btu1532464206324642063)
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75. (PMID: 10.1186/1471-2164-9-7522656982265698)
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K et al (2009) BLAST+: architecture and applications. BMC Bioinform 10:421. https://doi.org/10.1186/1471-2105-10-421. (PMID: 10.1186/1471-2105-10-421)
Heinrich A, Woyda K, Brauburger K, Meiss G, Detsch C, Stulke J et al (2006) Interaction of the membrane-bound GlnK-AmtB complex with the master regulator of nitrogen metabolism TnrA in Bacillus subtilis. J Biol Chem 281(46):34909–34917. https://doi.org/10.1074/jbc.M607582200. (PMID: 10.1074/jbc.M60758220017001076)
Kayumov A, Heinrich A, Fedorova K, Ilinskaya O, Forchhammer K (2011) Interaction of the general transcription factor TnrA with the PII-like protein GlnK and glutamine synthetase in Bacillus subtilis. FEBS J 278(10):1779–1789. https://doi.org/10.1111/j.1742-4658.2011.08102.x. (PMID: 10.1111/j.1742-4658.2011.08102.x21435182)
Tremblay PL, Hallenbeck PC (2009) Of blood, brains and bacteria, the Amt/Rh transporter family: emerging role of Amt as a unique microbial sensor. Mol Microbiol 71(1):12–22. https://doi.org/10.1111/j.1365-2958.2008.06514.x. (PMID: 10.1111/j.1365-2958.2008.06514.x19007411)
Yakunin AF, Hallenbeck PC (2002) AmtB is necessary for NH(4)(+)-induced nitrogenase switch-off and ADP-ribosylation in Rhodobacter capsulatus. J Bacteriol 184(15):4081–4088. https://doi.org/10.1128/jb.184.15.4081-4088.2002. (PMID: 10.1128/jb.184.15.4081-4088.200212107124135213)
Van Dommelen A, Keijers V, Vanderleyden J, de Zamaroczy M (1998) (Methyl)ammonium transport in the nitrogen-fixing bacterium Azospirillum brasilense. J Bacteriol 180(10):2652–2659. (PMID: 10.1128/JB.180.10.2652-2659.1998)
Paz-Yepes J, Merino-Puerto V, Herrero A, Flores E (2008) The Amt gene cluster of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 190(19):6534–6539. https://doi.org/10.1128/JB.00613-08. (PMID: 10.1128/JB.00613-08186894792566009)
Hosie AH, Poole PS (2001) Bacterial ABC transporters of amino acids. Res Microbiol 152(3–4):259–270. https://doi.org/10.1016/s0923-2508(01)01197-4. (PMID: 10.1016/s0923-2508(01)01197-411421273)
Van Heeswijk WC, Westerhoff HV, Boogerd FC (2013) Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 77(4):628–695. https://doi.org/10.1128/MMBR.00025-13. (PMID: 10.1128/MMBR.00025-13242965753973380)
Lightfoot DA, Baron AJ, Wootton JC (1988) Expression of the Escherichia coli glutamate dehydrogenase gene in the cyanobacterium Synechococcus PCC6301 causes ammonium tolerance. Plant Mol Biol 11(3):335–344. https://doi.org/10.1007/BF00027390. (PMID: 10.1007/BF0002739024272346)
Reitzer L (2003) Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 57:155–176. https://doi.org/10.1146/annurev.micro.57.030502.090820. (PMID: 10.1146/annurev.micro.57.030502.09082012730324)
Wray LV, Ferson AE, Rohrer K, Fisher SH (1996) TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. Proc Natl Acad Sci USA 93(17):8841–8845. https://doi.org/10.1073/pnas.93.17.8841. (PMID: 10.1073/pnas.93.17.88418799114)
Sonenshein AL (2007) Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol 5(12):917–927. https://doi.org/10.1038/nrmicro1772. (PMID: 10.1038/nrmicro177217982469)
Commichau FM, Herzberg C, Tripal P, Valerius O, Stülke J (2007) A regulatory protein-protein interaction governs glutamate biosynthesis in Bacillus subtilis: the glutamate dehydrogenase RocG moonlights in controlling the transcription factor GltC. Mol Microbiol 65(3):642–654. https://doi.org/10.1111/j.1365-2958.2007.05816.x. (PMID: 10.1111/j.1365-2958.2007.05816.x17608797)
Fisher SH (1999) Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference! Mol Microbiol 32(2):223–232. https://doi.org/10.1046/j.1365-2958.1999.01333.x. (PMID: 10.1046/j.1365-2958.1999.01333.x10231480)
Hauf K, Kayumov A, Gloge F, Forchhammer K (2016) The molecular basis of TnrA control by glutamine synthetase in Bacillus subtilis. J Biol Chem 291(7):3483–3495. https://doi.org/10.1074/jbc.M115.680991. (PMID: 10.1074/jbc.M115.68099126635369)
Fedorova K, Kayumov A, Woyda K, Ilinskaja O, Forchhammer K (2013) Transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in Bacillus subtilis. FEBS Lett 587(9):1293–1298. https://doi.org/10.1016/j.febslet.2013.03.015. (PMID: 10.1016/j.febslet.2013.03.01523535029)
Grant Information:
MD- 572.2020.4 Council on grants of the President of the Russian Federation; EXC 2124 Deutsche Forschungsgemeinschaft; 075-02-2020-1478 Ministry of science and higher education of Russian Federation
Substance Nomenclature:
0 (Bacterial Proteins)
SCR Organism:
Lactobacillus hilgardii
Entry Date(s):
Date Created: 20200818 Date Completed: 20210514 Latest Revision: 20211208
Update Code:
20240105
DOI:
10.1007/s00284-020-02161-6
PMID:
32803419
Czasopismo naukowe
Lactic acid bacteria are widespread in various ecological niches with the excess of nutrients and have reduced capabilities to adapt to starvation. Among more than 280 Lactobacillus species known to the date, only five, including Lactobacillus hilgardii, carry in their genome the gene encoding for PII-like protein, one of the central regulators of cellular metabolism generally responding to energy- and carbon-nitrogen status in many free-living Bacteria, Archaea and in plant chloroplasts. In contrast to the classical PII encoding genes, in L. hilgardii genome the gene for PII homologue is located within the potABCD operon, encoding the ABC transporter for polyamines. Based on the unique genetic context and low sequence identity with genes of any other so-far characterized PII subfamilies, we termed this gene potN (Pot-protein, Nucleotide-binding). The second specific feature of L. hilgardii genome is that many genes encoding the proteins with similar function are present in two copies, while with low mutual identity. Thus, L. hilgardii LMG 7934 genome carries two genes of glutamine synthetase with 55% identity. One gene is located within classical glnRA operon with the gene of GlnR-like transcriptional regulator, while the second is monocistronic. Together with the relative large genome of L. hilgardii as compared to other Lactobacilli (2.771.862 bp vs ~ 2.2 Mbp in median), these data suggest significant re-arrangements of the genome and a wider range of adaptive capabilities of L. hilgardii in comparison to other bacteria of the genus Lactobacillus.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies